print.GP.Rd
Prints the summary of a class GP
object estimated by GP_fit
# S3 method for class 'GP'
print(x, ...)
a class GP
object estimated by GP_fit
for compatibility with generic method print
Prints the summary of the class GP
object. It returns the number of
observations, input dimension, parameter estimates of the GP model, lower
bound on the nugget, and the nugget threshold parameter (described in
GP_fit
).
## 1D example
n <- 5
d <- 1
computer_simulator <- function(x){
x <- 2 * x + 0.5
y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
return(y)
}
set.seed(3)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
print(GPmodel)
#>
#> Number Of Observations: n = 5
#> Input Dimensions: d = 1
#>
#> Correlation: Exponential (power = 1.95)
#> Correlation Parameters:
#> beta_hat
#> [1] 0.6433793
#>
#> sigma^2_hat: [1] 7.262407
#>
#> delta_lb(beta_hat): [1] 0
#>
#> nugget threshold parameter: 20
#>
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 <- 4*x[,1] - 2
x2 <- 4*x[,2] - 2
t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 +
6*x1*x2 + 3*x2^2)
t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 -
36*x1*x2 + 27*x2^2)
y <- t1*t2
return(y)
}
n <- 30
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
#> Warning: NaNs produced
#> Error in GP_deviance(beta = row, X = X, Y = Y, nug_thres = nug_thres, corr = corr): Infinite values of the Deviance Function,
#> unable to find optimum parameters
print(GPmodel, digits = 3)
#>
#> Number Of Observations: n = 5
#> Input Dimensions: d = 1
#>
#> Correlation: Exponential (power = 1.95)
#> Correlation Parameters:
#> beta_hat
#> [1] 0.643
#>
#> sigma^2_hat: [1] 7.26
#>
#> delta_lb(beta_hat): [1] 0
#>
#> nugget threshold parameter: 20
#>