abs.error.pred.Rd
Computes the mean and median of various absolute errors related to ordinary multiple regression models. The mean and median absolute errors correspond to the mean square due to regression, error, and total. The absolute errors computed are derived from \(\hat{Y} - \mbox{median($\hat{Y}$)}\), \(\hat{Y} - Y\), and \(Y - \mbox{median($Y$)}\). The function also computes ratios that correspond to \(R^2\) and \(1 - R^2\) (but these ratios do not add to 1.0); the \(R^2\) measure is the ratio of mean or median absolute \(\hat{Y} - \mbox{median($\hat{Y}$)}\) to the mean or median absolute \(Y - \mbox{median($Y$)}\). The \(1 - R^2\) or SSE/SST measure is the mean or median absolute \(\hat{Y} - Y\) divided by the mean or median absolute \(\hat{Y} - \mbox{median($Y$)}\).
abs.error.pred(fit, lp=NULL, y=NULL)
# S3 method for class 'abs.error.pred'
print(x, ...)
a fit object typically from lm
or ols
that contains a y vector (i.e., you should have specified
y=TRUE
to the fitting function) unless the y
argument
is given to abs.error.pred
. If you do not specify the
lp
argument, fit
must contain fitted.values
or
linear.predictors
. You must specify fit
or both of
lp
and y
.
a vector of predicted values (Y hat above) if fit
is not given
a vector of response variable values if fit
(with
y=TRUE
in effect) is not given
an object created by abs.error.pred
unused
a list of class abs.error.pred
(used by
print.abs.error.pred
) containing two matrices:
differences
and ratios
.
lm
, ols
, cor
,
validate.ols
Schemper M (2003): Stat in Med 22:2299-2308.
Tian L, Cai T, Goetghebeur E, Wei LJ (2007): Biometrika 94:297-311.
set.seed(1) # so can regenerate results
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- exp(x1+x2+rnorm(100))
f <- lm(log(y) ~ x1 + poly(x2,3), y=TRUE)
abs.error.pred(lp=exp(fitted(f)), y=y)
#>
#> Mean/Median |Differences|
#>
#> Mean Median
#> |Yi hat - median(Y hat)| 1.983447 0.8651185
#> |Yi hat - Yi| 2.184563 0.5436367
#> |Yi - median(Y)| 2.976277 1.0091661
#>
#>
#> Ratios of Mean/Median |Differences|
#>
#> Mean Median
#> |Yi hat - median(Y hat)|/|Yi - median(Y)| 0.6664189 0.8572607
#> |Yi hat - Yi|/|Yi - median(Y)| 0.7339920 0.5386989
rm(x1,x2,y,f)