dotchartpl.Rd
This function produces a plotly
interactive graphic and accepts
a different format of data input than the other dotchart
functions. It was written to handle a hierarchical data structure
including strata that further subdivide the main classes. Strata,
indicated by the mult
variable, are shown on the same
horizontal line, and if the variable big
is FALSE
will
appear slightly below the main line, using smaller symbols, and having
some transparency. This is intended to handle output such as that
from the summaryP
function when there is a superpositioning
variable group
and a stratification variable mult
,
especially when the data have been run through the addMarginal
function to create mult
categories labelled "All"
for
which the user will specify big=TRUE
to indicate non-stratified
estimates (stratified only on group
) to emphasize.
When viewing graphics that used mult
and big
, the user
can click on the legends for the small points for group
s to
vanish the finely stratified estimates.
When group
is used by mult
and big
are not, and
when the group
variable has exactly two distinct values, you
can specify refgroup
to get the difference between two
proportions in addition to the individual proportions. The individual
proportions are plotted, but confidence intervals for the difference
are shown in hover text and half-width confidence intervals for the
difference, centered at the midpoint of the proportions, are shown.
These have the property of intersecting the two proportions if and
only if there is no significant difference at the 1 - conf.int
level.
Specify fun=exp
and ifun=log
if estimates and confidence
limits are on the log scale. Make sure that zeros were prevented in
the original calculations. For exponential hazard rates this can be
accomplished by replacing event counts of 0 with 0.5.
dotchartpl(x, major=NULL, minor=NULL, group=NULL, mult=NULL,
big=NULL, htext=NULL, num=NULL, denom=NULL,
numlabel='', denomlabel='',
fun=function(x) x, ifun=function(x) x, op='-',
lower=NULL, upper=NULL,
refgroup=NULL, sortdiff=TRUE, conf.int=0.95,
minkeep=NULL, xlim=NULL, xlab='Proportion',
tracename=NULL, limitstracename='Limits',
nonbigtracename='Stratified Estimates',
dec=3, width=800, height=NULL,
col=colorspace::rainbow_hcl)
a numeric vector used for values on the x
-axis
major vertical category, e.g., variable labels
minor vertical category, e.g. category levels within variables
superpositioning variable such as treatment
strata names for further subdivisions without
group
s
omit if all levels of mult
are equally important or
if mult
is omitted. Otherwise denotes major (larger points,
right on horizontal lines) vs. minor (smaller, transparent points
slightly below the line).
additional hover text per point
if x
represents proportions, optionally specifies
numerators to be used in fractions added to hover text. When
num
is given, x
is automatically added to hover text,
rounded to 3 digits after the decimal point.
like num
but for denominators
character string to put to the right of the numerator in hover text
character string to put to the right of the denominator in hover text
a transformation to make when printing estimates. For
example, one may specify fun=exp
to anti-log estimates and
confidence limites that were computed on a log basis
inverse transformation of fun
set to for example '/'
when fun=exp
and
effects are computed as ratios instead of differences. This is used
in hover text.
lower limits for optional error bars
upper limits for optional error bars
if group
is specified and there are exactly two
groups, specify the character string for the reference group in
computing difference in proportions. For example if
refgroup='A'
and the group
levels are 'A','B'
,
you will get B - A.
minor
categories are sorted by descending
values of the difference in proportions when refgroup
is used,
unless you specify sortdiff=FALSE
confidence level for computing confidence intervals
for the difference in two proportions. Specify conf.int=FALSE
to suppress confidence intervals.
if refgroup
and minkeep
are both given,
observations that are at or above minkeep
for at least one of
the groups are retained. The defaults to to keep all observations.
x
-axis limits
x
-axis label
plotly
trace name if group
is not used
plotly
trace name for lower
and
upper
if group
is not used
plotly
trace name used for non-big
elements, which usually represent stratified versions of the "big"
observations
a function or vector of colors to assign to group
.
If a function it will be evaluated with an argument equal to the
number of distinct groups.
number of places to the right of the decimal place for formatting numeric quantities in hover text
width of plot in pixels
height of plot in pixels; computed from number of strata by default
a plotly
object. An attribute levelsRemoved
is
added if minkeep
is used and any categories were omitted from
the plot as a result. This is a character vector with categories
removed. If major
is present, the strings are of the form
major:minor
if (FALSE) { # \dontrun{
set.seed(1)
d <- expand.grid(major=c('Alabama', 'Alaska', 'Arkansas'),
minor=c('East', 'West'),
group=c('Female', 'Male'),
city=0:2)
n <- nrow(d)
d$num <- round(100*runif(n))
d$denom <- d$num + round(100*runif(n))
d$x <- d$num / d$denom
d$lower <- d$x - runif(n)
d$upper <- d$x + runif(n)
with(d,
dotchartpl(x, major, minor, group, city, lower=lower, upper=upper,
big=city==0, num=num, denom=denom, xlab='x'))
# Show half-width confidence intervals for Female - Male differences
# after subsetting the data to have only one record per
# state/region/group
d <- subset(d, city == 0)
with(d,
dotchartpl(x, major, minor, group, num=num, denom=denom,
lower=lower, upper=upper, refgroup='Male')
)
n <- 500
set.seed(1)
d <- data.frame(
race = sample(c('Asian', 'Black/AA', 'White'), n, TRUE),
sex = sample(c('Female', 'Male'), n, TRUE),
treat = sample(c('A', 'B'), n, TRUE),
smoking = sample(c('Smoker', 'Non-smoker'), n, TRUE),
hypertension = sample(c('Hypertensive', 'Non-Hypertensive'), n, TRUE),
region = sample(c('North America','Europe','South America',
'Europe', 'Asia', 'Central America'), n, TRUE))
d <- upData(d, labels=c(race='Race', sex='Sex'))
dm <- addMarginal(d, region)
s <- summaryP(race + sex + smoking + hypertension ~
region + treat, data=dm)
s$region <- ifelse(s$region == 'All', 'All Regions', as.character(s$region))
with(s,
dotchartpl(freq / denom, major=var, minor=val, group=treat, mult=region,
big=region == 'All Regions', num=freq, denom=denom)
)
s2 <- s[- attr(s, 'rows.to.exclude1'), ]
with(s2,
dotchartpl(freq / denom, major=var, minor=val, group=treat, mult=region,
big=region == 'All Regions', num=freq, denom=denom)
)
# Note these plots can be created by plot.summaryP when options(grType='plotly')
# Plot hazard rates and ratios with confidence limits, on log scale
d <- data.frame(tx=c('a', 'a', 'b', 'b'),
event=c('MI', 'stroke', 'MI', 'stroke'),
count=c(10, 5, 5, 2),
exposure=c(1000, 1000, 900, 900))
# There were no zero event counts in this dataset. In general we
# want to handle that, hence the 0.5 below
d <- upData(d, hazard = pmax(0.5, count) / exposure,
selog = sqrt(1. / pmax(0.5, count)),
lower = log(hazard) - 1.96 * selog,
upper = log(hazard) + 1.96 * selog)
with(d,
dotchartpl(log(hazard), minor=event, group=tx, num=count, denom=exposure,
lower=lower, upper=upper,
fun=exp, ifun=log, op='/',
numlabel='events', denomlabel='years',
refgroup='a', xlab='Events Per Person-Year')
)
} # }