t.test.cluster.Rd
Does a 2-sample t-test for clustered data.
t.test.cluster(y, cluster, group, conf.int = 0.95)
# S3 method for class 't.test.cluster'
print(x, digits, ...)
a matrix of statistics of class t.test.cluster
Donner A, Birkett N, Buck C, Am J Epi 114:906-914, 1981.
Donner A, Klar N, J Clin Epi 49:435-439, 1996.
Hsieh FY, Stat in Med 8:1195-1201, 1988.
set.seed(1)
y <- rnorm(800)
group <- sample(1:2, 800, TRUE)
cluster <- sample(1:40, 800, TRUE)
table(cluster,group)
#> group
#> cluster 1 2
#> 1 4 7
#> 2 10 8
#> 3 9 10
#> 4 8 11
#> 5 14 6
#> 6 8 10
#> 7 7 14
#> 8 10 10
#> 9 6 11
#> 10 11 12
#> 11 12 3
#> 12 10 13
#> 13 12 11
#> 14 13 11
#> 15 8 4
#> 16 9 8
#> 17 11 16
#> 18 8 14
#> 19 11 12
#> 20 7 12
#> 21 11 14
#> 22 8 7
#> 23 12 10
#> 24 14 11
#> 25 7 12
#> 26 10 14
#> 27 10 8
#> 28 18 13
#> 29 11 14
#> 30 7 11
#> 31 2 12
#> 32 14 6
#> 33 6 11
#> 34 12 12
#> 35 14 4
#> 36 6 10
#> 37 11 8
#> 38 8 9
#> 39 5 15
#> 40 15 7
t.test(y ~ group) # R only
#>
#> Welch Two Sample t-test
#>
#> data: y by group
#> t = 3, df = 788, p-value = 0.01
#> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
#> 95 percent confidence interval:
#> 0.0436 0.3282
#> sample estimates:
#> mean in group 1 mean in group 2
#> 0.0792 -0.1067
#>
t.test.cluster(y, cluster, group)
#> 1 2
#> N 389 411
#> Clusters 40 40
#> Mean 0.0792 -0.1067
#> SS among clusters within groups 43.5 40.6
#> SS within clusters within groups 388 363
#> MS among clusters within groups 1.08
#> d.f. 78
#> MS within clusters within groups 1.04
#> d.f. 720
#> Na 9.85
#> Intracluster correlation 0.00347
#> Variance Correction Factor 1.03 1.04
#> Variance of effect 0.0054
#> Variance without cluster adjustment 0.00522
#> Design Effect 1.03
#> Effect (Difference in Means) -0.186
#> S.E. of Effect 0.0735
#> 0.95 Confidence limits -0.3300 -0.0419
#> Z Statistic -2.53
#> 2-sided P Value 0.0114
# Note: negate estimates of differences from t.test to
# compare with t.test.cluster