abs.error.pred.RdComputes the mean and median of various absolute errors related to ordinary multiple regression models. The mean and median absolute errors correspond to the mean square due to regression, error, and total. The absolute errors computed are derived from \(\hat{Y} - \mbox{median($\hat{Y}$)}\), \(\hat{Y} - Y\), and \(Y - \mbox{median($Y$)}\). The function also computes ratios that correspond to \(R^2\) and \(1 - R^2\) (but these ratios do not add to 1.0); the \(R^2\) measure is the ratio of mean or median absolute \(\hat{Y} - \mbox{median($\hat{Y}$)}\) to the mean or median absolute \(Y - \mbox{median($Y$)}\). The \(1 - R^2\) or SSE/SST measure is the mean or median absolute \(\hat{Y} - Y\) divided by the mean or median absolute \(\hat{Y} - \mbox{median($Y$)}\).
abs.error.pred(fit, lp=NULL, y=NULL)
# S3 method for class 'abs.error.pred'
print(x, ...)a fit object typically from lm or ols
that contains a y vector (i.e., you should have specified
y=TRUE to the fitting function) unless the y argument
is given to abs.error.pred. If you do not specify the
lp argument, fit must contain fitted.values or
linear.predictors. You must specify fit or both of
lp and y.
a vector of predicted values (Y hat above) if fit is not given
a vector of response variable values if fit (with
y=TRUE in effect) is not given
an object created by abs.error.pred
unused
a list of class abs.error.pred (used by
print.abs.error.pred) containing two matrices:
differences and ratios.
lm, ols, cor,
validate.ols
Schemper M (2003): Stat in Med 22:2299-2308.
Tian L, Cai T, Goetghebeur E, Wei LJ (2007): Biometrika 94:297-311.
set.seed(1) # so can regenerate results
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- exp(x1+x2+rnorm(100))
f <- lm(log(y) ~ x1 + poly(x2,3), y=TRUE)
abs.error.pred(lp=exp(fitted(f)), y=y)
#>
#> Mean/Median |Differences|
#>
#> Mean Median
#> |Yi hat - median(Y hat)| 1.983447 0.8651185
#> |Yi hat - Yi| 2.184563 0.5436367
#> |Yi - median(Y)| 2.976277 1.0091661
#>
#>
#> Ratios of Mean/Median |Differences|
#>
#> Mean Median
#> |Yi hat - median(Y hat)|/|Yi - median(Y)| 0.6664189 0.8572607
#> |Yi hat - Yi|/|Yi - median(Y)| 0.7339920 0.5386989
rm(x1,x2,y,f)