Dataset on subjective happiness, tax rates, population sizes, continent, and major religion for 148 countries
A data frame with 148 observations on the following 6 variables.
a factor with 148 levels that contain the country names
a numeric vector with the average subject happiness score (on a scale from 0-10)
a numeric vector showing the tax revenue as percentage of GDP
a factor with levels Buddhist
Christian
Hindu
Muslim
None
or Other
a factor with levels AF
, AS
,
EU
, NA
, OC
, SA
, corresponding to the continents
Africa, Asia, Europe, North America, Ocenaia, South American, respectively
a numeric vector showing the population (in millions)
Data collected by Ellen Ekstroem.
Population sizes are from
Wikipedia per August 2nd, 2012
https://en.wikipedia.org/wiki/List_of_countries_by_population
Major
religions are from Wikipedia per August 2nd, 2012
https://en.wikipedia.org/wiki/Religions_by_country
Tax rates are
from Wikipedia per August 2nd, 2012
https://en.wikipedia.org/wiki/List_of_countries_by_tax_revenue_as_percentage_of_GDP
Average happiness scores are from "Veenhoven, R. Average happiness in
148 nations 2000-2009, World Database of Happiness, Erasmus University
Rotterdam, The Netherlands". Assessed on August 2nd, 2012 at:
https://worlddatabaseofhappiness-archive.eur.nl/hap_nat/findingreports/RankReport_AverageHappiness.php
data(happiness)
with(happiness, symbols(tax, happy, circles=sqrt(population)/8, inches=FALSE, bg=continent))
#
# Make a prettier image with transparent colors
#
newcols <- rgb(t(col2rgb(palette())),
alpha=100, maxColorValue=255)
with(happiness, symbols(tax, happy, circles=sqrt(population)/8,
inches=FALSE, bg=newcols[continent],
xlab="Tax (% of GDP)", ylab="Happiness"))
#
# Simple analysis
#
res <- lm(happy ~ religion + population + tax:continent, data=happiness)
summary(res)
#>
#> Call:
#> lm(formula = happy ~ religion + population + tax:continent, data = happiness)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.96338 -0.67564 -0.05445 0.59088 2.26032
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 5.5427302 0.3739363 14.823 < 2e-16 ***
#> religionChristian -0.8019944 0.4014948 -1.998 0.04786 *
#> religionHindu -0.8993147 0.8097789 -1.111 0.26880
#> religionMuslim -0.3065812 0.3611458 -0.849 0.39749
#> religionNone -0.7014654 0.4929272 -1.423 0.15711
#> religionOther -1.3999987 0.6335210 -2.210 0.02886 *
#> population 0.0003362 0.0005979 0.562 0.57484
#> tax:continentAF -0.0210612 0.0137894 -1.527 0.12911
#> tax:continentAS 0.0383673 0.0140178 2.737 0.00707 **
#> tax:continentEU 0.0470980 0.0081429 5.784 5.16e-08 ***
#> tax:continentNA 0.1069641 0.0164712 6.494 1.62e-09 ***
#> tax:continentOC 0.0869860 0.0218046 3.989 0.00011 ***
#> tax:continentSA 0.0831271 0.0148874 5.584 1.32e-07 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.9362 on 130 degrees of freedom
#> (5 observations deleted due to missingness)
#> Multiple R-squared: 0.5331, Adjusted R-squared: 0.49
#> F-statistic: 12.37 on 12 and 130 DF, p-value: < 2.2e-16
#>