nearPD.Rd
Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.
nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)
numeric \(n \times n\) approximately positive
definite matrix, typically an approximation to a correlation or
covariance matrix. If x
is not symmetric (and
ensureSymmetry
is not false), symmpart(x)
is used.
logical indicating if the matrix should be a correlation matrix.
logical, generalizing corr
: if TRUE
, the
resulting matrix should have the same diagonal
(diag(x)
) as the input matrix.
logical indicating if the resulting mat
component should be a base matrix
or (by default) a
Matrix
of class dpoMatrix
.
logical indicating if a
posdefify()
eigen step should be applied to
the result of the Higham algorithm.
logical indicating if X <- (X + t(X))/2
should be
done, after X <- tcrossprod(Qd, Q)
; some doubt if this is necessary.
logical indicating if Dykstra's correction should be used; true by default. If false, the algorithm is basically the direct fixpoint iteration \(Y_k = P_U(P_S(Y_{k-1}))\).
logical; if TRUE
, the result is just the
vector of eigenvalues of the approximating matrix.
logical; by default, symmpart(x)
is used whenever isSymmetric(x)
is not true. The user
can explicitly set this to TRUE
or FALSE
, saving the
symmetry test. Beware however that setting it FALSE
for an asymmetric input x
, is typically nonsense!
defines relative positiveness of eigenvalues compared to largest one, \(\lambda_1\). Eigenvalues \(\lambda_k\) are treated as if zero when \(\lambda_k / \lambda_1 \le eig.tol\).
convergence tolerance for Higham algorithm.
tolerance for enforcing positive definiteness (in the
final posdefify
step when do2eigen
is TRUE
).
maximum number of iterations allowed.
convergence norm type (norm(*,
type)
) used for Higham algorithm. The default is "I"
(infinity), for reasons of speed (and back compatibility); using
"F"
is more in line with Higham's proposal.
logical or integer specifying if convergence monitoring should be traced.
This implements the algorithm of Higham (2002), and then (if
do2eigen
is true) forces positive definiteness using code from
posdefify
. The algorithm of Knol and ten
Berge (1989) (not implemented here) is more general in that it
allows constraints to (1) fix some rows (and columns) of the matrix and
(2) force the smallest eigenvalue to have a certain value.
Note that setting corr = TRUE
just sets diag(.) <- 1
within the algorithm.
Higham (2002) uses Dykstra's correction, but the version by Jens
Oehlschlägel did not use it (accidentally),
and still gave reasonable results; this simplification, now only
used if doDykstra = FALSE
,
was active in nearPD()
up to Matrix version 0.999375-40.
If only.values = TRUE
, a numeric vector of eigenvalues of the
approximating matrix;
Otherwise, as by default, an S3 object of class
"nearPD"
, basically a list with components
a matrix of class dpoMatrix
, the
computed positive-definite matrix.
numeric vector of eigenvalues of mat
.
logical, just the argument corr
.
the Frobenius norm (norm(x-X, "F")
) of the
difference between the original and the resulting matrix.
number of iterations needed.
logical indicating if iterations converged.
Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097–1110.
Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika 54, 53–61.
Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA Journal of Numerical Analysis 22, 329–343.
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A[c("mat", "normF")]
#> $mat
#> 3 x 3 Matrix of class "dpoMatrix"
#> [,1] [,2] [,3]
#> [1,] 1.0000000 0.7606899 0.1572981
#> [2,] 0.7606899 1.0000000 0.7606899
#> [3,] 0.1572981 0.7606899 1.0000000
#>
#> $normF
#> [1] 0.5277903
#>
n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat
stopifnot(exprs = { #=--------------
all.equal(n.A$mat[1,2], 0.760689917)
all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16
})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00 0.65 -0.46 -1.15 -0.76
#> [2,] 0.65 1.00 0.58 0.50 -0.90
#> [3,] -0.46 0.58 1.00 -0.45 -0.32
#> [4,] -1.15 0.50 -0.45 1.00 0.25
#> [5,] -0.76 -0.90 -0.32 0.25 1.00
str(near.m <- nearPD(m, trace = TRUE))
#> iter 1 : #{p}=4, ||Y-X|| / ||Y||= 0.268591
#> iter 2 : #{p}=4, ||Y-X|| / ||Y||= 0
#> List of 7
#> $ mat :Formal class 'dpoMatrix' [package "Matrix"] with 5 slots
#> .. ..@ Dim : int [1:2] 5 5
#> .. ..@ Dimnames:List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : NULL
#> .. ..@ x : num [1:25] 1.313 0.406 -0.242 -0.852 -0.753 ...
#> .. ..@ uplo : chr "U"
#> .. ..@ factors : list()
#> $ eigenvalues: num [1:5] 2.80 1.83 1.23 7.70e-02 2.80e-08
#> $ corr : logi FALSE
#> $ normF : num 0.938
#> $ iterations : int 2
#> $ rel.tol : num 0
#> $ converged : logi TRUE
#> - attr(*, "class")= chr "nearPD"
round(near.m$mat, 2)
#> 5 x 5 Matrix of class "dsyMatrix"
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.31 0.41 -0.24 -0.85 -0.75
#> [2,] 0.41 1.19 0.41 0.27 -0.91
#> [3,] -0.24 0.41 1.15 -0.24 -0.32
#> [4,] -0.85 0.27 -0.24 1.28 0.26
#> [5,] -0.75 -0.91 -0.32 0.26 1.00
norm(m - near.m$mat) # 1.102 / 1.08
#> [1] 1.079735
if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"
}
#> Loading required namespace: sfsmisc
#> [1] 1.184855
round(nearPD(m, only.values=TRUE), 9)
#> [1] 2.800681404 1.831722441 1.229003616 0.076994641 0.000000028
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
#> [1] 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
#> [1] 12
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
#> List of 7
#> $ mat :Formal class 'dpoMatrix' [package "Matrix"] with 5 slots
#> .. ..@ Dim : int [1:2] 6 6
#> .. ..@ Dimnames:List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : NULL
#> .. ..@ x : num [1:36] 1.006 0.485 0.643 0.487 0.646 ...
#> .. ..@ uplo : chr "U"
#> .. ..@ factors : list()
#> $ eigenvalues: num [1:6] 4.213 0.771 0.515 0.385 0.178 ...
#> $ corr : logi FALSE
#> $ normF : num 0.0626
#> $ iterations : int 2
#> $ rel.tol : num 0
#> $ converged : logi TRUE
#> - attr(*, "class")= chr "nearPD"
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 / 30 !
#> [1] 30
ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example
## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
#> [1] 0.09994443
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805
#> [1] 0.08804689
### 3) a real data example from a 'systemfit' model (3 eq.):
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
#> [1] "symW"
dim(symW) # 24 x 24
#> [1] 24 24
class(symW)# "dsCMatrix": sparse symmetric
#> [1] "dsCMatrix"
#> attr(,"package")
#> [1] "Matrix"
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0 37 999 11031812 5536 177467251
tail(EV)# all 6 are negative
#> [1] -1.615418e-05 -4.803894e-05 -9.448841e-05 -8.402689e-04 -1.658025e-03
#> [6] -5.476273e-03
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {
plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
for(side in 1:2) sfsmisc::eaxis(side)
} else
plot(pmax(1e-3,EV), EV2, type="o", log="xy")
abline(0, 1, col="red3", lty=2)