updown-methods.Rd
Computes a rank-\(k\) update or downdate of a sparse Cholesky factorization $$P_{1} A P_{1}' = L_{1} D L_{1}' = L L'$$ which for some \(k\)-column matrix \(C\) is the factorization $$P_{1} (A + s C C') P_{1}' = \tilde{L}_{1} \tilde{D} \tilde{L}_{1}' = \tilde{L} \tilde{L}'$$ Here, \(s = 1\) for an update and \(s = -1\) for a downdate.
updown(update, C, L)
a logical (TRUE
or FALSE
) or
character ("+"
or "-"
) indicating if L
should be updated (or otherwise downdated).
a finite matrix or
Matrix
such that
tcrossprod(C)
has the dimensions of L
.
an object of class dCHMsimpl
or
dCHMsuper
specifying a sparse Cholesky
factorization.
A sparse Cholesky factorization with dimensions matching L
,
typically of class dCHMsimpl
.
Davis, T. A., Hager, W. W. (2001). Multiple-rank modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 22(4), 997-1013. doi:10.1137/S0895479899357346