invertPerm.RdinvertPerm and signPerm compute the inverse and sign
of a length-n permutation vector. isPerm tests
if a length-n integer vector is a valid permutation vector.
asPerm coerces a length-m transposition vector to a
length-n permutation vector, where m <= n.
invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))
invPerm(p, zero.p = FALSE, zero.res = FALSE)an integer vector of length n.
an integer vector of length m.
an integer offset, indicating that p is
a permutation of off+0:(n-1) or that pivot
contains m values sampled with replacement from
off+0:(n-1).
an integer offset, indicating that the result
should be a permutation of ioff+0:(n-1).
a integer greater than or equal to m,
indicating the length of the result. Transpositions
are applied to a permutation vector vector initialized
as seq_len(n).
a logical. Equivalent to off=0 if TRUE
and off=1 if FALSE.
a logical. Equivalent to ioff=0 if TRUE
and ioff=1 if FALSE.
invertPerm(p, off, ioff=1) is equivalent to
order(p) or sort.list(p)
for all values of off. For the default value
off=1, it returns the value of p after
p[p] <- seq_along(p).
invPerm is a simple wrapper around invertPerm,
retained for backwards compatibility.
By default, i.e., with off=1 and ioff=1:
invertPerm(p) returns an integer vector of length
length(p) such that p[invertPerm(p)]
and invertPerm(p)[p] are both seq_along(p),
i.e., the identity permutation.
signPerm(p) returns 1 if p is an even permutation
and -1 otherwise (i.e., if p is odd).
isPerm(p) returns TRUE if p is a
permutation of seq_along(p) and FALSE otherwise.
asPerm(pivot) returns the result of transposing elements
i and pivot[i] of a permutation vector initialized
as seq_len(n), for i in seq_along(pivot).
Class pMatrix of permutation matrices.
p <- sample(10L) # a random permutation vector
ip <- invertPerm(p)
s <- signPerm(p)
## 'p' and 'ip' are indeed inverses:
stopifnot(exprs = {
isPerm(p)
isPerm(ip)
identical(s, 1L) || identical(s, -1L)
identical(s, signPerm(ip))
identical(p[ip], 1:10)
identical(ip[p], 1:10)
identical(invertPerm(ip), p)
})
## Product of transpositions (1 2)(2 1)(4 3)(6 8)(10 1) = (3 4)(6 8)(1 10)
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 8L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {
identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
identical(q[q], seq_len(10L)) # because the permutation is odd:
signPerm(q) == -1L
})
invPerm # a less general version of 'invertPerm'
#> function (p, zero.p = FALSE, zero.res = FALSE)
#> invertPerm(p, if (zero.p) 0L else 1L, if (zero.res) 0L else 1L)
#> <bytecode: 0x55f4e6b72830>
#> <environment: namespace:Matrix>