updown-methods.RdComputes a rank-\(k\) update or downdate of a sparse Cholesky factorization $$P_{1} A P_{1}' = L_{1} D L_{1}' = L L'$$ which for some \(k\)-column matrix \(C\) is the factorization $$P_{1} (A + s C C') P_{1}' = \tilde{L}_{1} \tilde{D} \tilde{L}_{1}' = \tilde{L} \tilde{L}'$$ Here, \(s = 1\) for an update and \(s = -1\) for a downdate.
updown(update, C, L)a logical (TRUE or FALSE) or
character ("+" or "-") indicating if L
should be updated (or otherwise downdated).
a finite matrix or
Matrix such that
tcrossprod(C) has the dimensions of L.
an object of class dCHMsimpl or
dCHMsuper specifying a sparse Cholesky
factorization.
A sparse Cholesky factorization with dimensions matching L,
typically of class dCHMsimpl.
Davis, T. A., Hager, W. W. (2001). Multiple-rank modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 22(4), 997-1013. doi:10.1137/S0895479899357346