These data.frames give sample size tables calculated with sampleN.TOST() for the 2×2×3 replicate crossover design (2-treatment 2-sequence 3-period design.

Details

The data.frames can be accessed by their names.

data.frameDescription
ct9.6.2Additive model, theta1=–0.2, theta2=+0.2 (BE limits 0.80 – 1.20)
approximate power via shifted non-central t-distribution
ct9.6.6Multiplicative model, theta1=0.8, theta2=1.25 (1/theta1)
approximate power via shifted non-central t-distribution

Attention! CV is se (standard error) of residuals.

Source

data.frameOriginDetails
ct9.6.2Chow & LiuTable 9.6.2 (p 292)
ct9.6.6Chow & LiuTable 9.6.6 (p 293)

References

Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. Boca Raton: CRC Press; 3rd edition 2009.

Note

Scripts for creation of these data.frames can be found in the /tests sub-directory of the package.
Comparing the results of these scripts to the corresponding data.frames can be used for validation purposes.

Author

PowerTOST

Examples

ct9.6.2
#>      CV power R0.0 R0.05 R0.1 R0.15
#> 1  0.10   0.8    6     6   12    38
#> 2  0.12   0.8    6     8   16    56
#> 3  0.14   0.8    8    10   20    74
#> 4  0.16   0.8   10    12   26    96
#> 5  0.18   0.8   12    16   32   122
#> 6  0.20   0.8   14    18   38   150
#> 7  0.22   0.8   18    22   46   182
#> 8  0.24   0.8   20    26   56   216
#> 9  0.26   0.8   24    30   64   252
#> 10 0.28   0.8   28    34   74   292
#> 11 0.30   0.8   30    40   86   336
#> 12 0.32   0.8   34    44   96   382
#> 13 0.34   0.8   38    50  108   430
#> 14 0.36   0.8   44    56  122   482
#> 15 0.38   0.8   48    62  136   538
#> 16 0.40   0.8   54    68  150   596
#> 17 0.10   0.9    6     8   14    54
#> 18 0.12   0.9    8    10   20    76
#> 19 0.14   0.9   10    14   28   102
#> 20 0.16   0.9   12    16   34   134
#> 21 0.18   0.9   16    20   44   168
#> 22 0.20   0.9   18    24   54   208
#> 23 0.22   0.9   22    30   64   250
#> 24 0.24   0.9   26    34   76   298
#> 25 0.26   0.9   30    40   88   350
#> 26 0.28   0.9   34    46  102   404
#> 27 0.30   0.9   38    54  118   464
#> 28 0.32   0.9   44    60  134   528
#> 29 0.34   0.9   48    68  150   596
#> 30 0.36   0.9   54    76  168   668
#> 31 0.38   0.9   60    84  188   744
#> 32 0.40   0.9   66    94  208   824
ct9.6.6
#>           CV power R0.85 R0.9 R0.95 R1.0 R1.05 R1.1 R1.15 R1.2
#> 1  0.1002505   0.8    28    8     6    4     6    8    16   58
#> 2  0.1204333   0.8    38   12     6    6     6   10    22   82
#> 3  0.1406888   0.8    52   14     8    8     8   12    28  110
#> 4  0.1610295   0.8    66   18    10    8    10   16    36  144
#> 5  0.1814679   0.8    84   24    12   10    12   20    44  182
#> 6  0.2020168   0.8   102   28    14   12    14   24    56  224
#> 7  0.2226890   0.8   124   34    18   14    18   30    66  272
#> 8  0.2434978   0.8   148   40    20   16    20   34    78  322
#> 9  0.2644565   0.8   172   46    24   20    24   40    92  378
#> 10 0.2855787   0.8   200   54    28   22    26   46   106  438
#> 11 0.3068783   0.8   228   62    30   26    30   52   122  502
#> 12 0.3283695   0.8   260   70    34   28    34   60   138  572
#> 13 0.3500668   0.8   294   80    40   32    38   68   156  646
#> 14 0.3719851   0.8   328   88    44   36    42   76   174  722
#> 15 0.3941398   0.8   366   98    48   40    48   84   194  806
#> 16 0.4165464   0.8   406  108    54   44    52   92   216  892
#> 17 0.1002505   0.9    36   12     6    6     6   10    20   78
#> 18 0.1204333   0.9    52   16     8    6     8   14    28  112
#> 19 0.1406888   0.9    70   20    10    8    10   18    38  152
#> 20 0.1610295   0.9    92   26    14   10    12   22    50  200
#> 21 0.1814679   0.9   116   32    16   12    16   28    62  252
#> 22 0.2020168   0.9   142   38    20   16    18   34    76  310
#> 23 0.2226890   0.9   170   46    24   18    22   40    92  374
#> 24 0.2434978   0.9   204   56    28   20    26   48   108  446
#> 25 0.2644565   0.9   238   64    32   24    30   54   126  522
#> 26 0.2855787   0.9   276   74    36   28    36   64   146  606
#> 27 0.3068783   0.9   316   86    42   32    40   72   168  696
#> 28 0.3283695   0.9   360   96    46   36    46   82   192  792
#> 29 0.3500668   0.9   406  108    52   40    52   92   216  892
#> 30 0.3719851   0.9   454  122    58   44    58  104   242 1000
#> 31 0.3941398   0.9   506  136    64   50    64  116   268 1114
#> 32 0.4165464   0.9   562  150    72   54    70  128   298 1236