These data.frames give sample size tables calculated with sampleN.TOST() for the 2×4×4 replicate crossover design (2-treatment 4-sequence 4-period design).

Details

The data.frames can be accessed by their names.

data.frameDescription
ct9.6.4Additive model, theta1=–0.2, theta2=+0.2 (BE limits 0.80 – 1.20)
approximate power via shifted non-central t-distribution
ct9.6.8Multiplicative model, theta1=0.8, theta2=1.25 (1/theta1)
approximate power via shifted non-central t-distribution

Attention! CV is se (standard error) of residuals.

Source

data.frameOriginDetails
ct9.6.4Chow & LiuTable 9.6.4 (p 294)
ct9.6.8Chow & LiuTable 9.6.8 (p 298)

References

Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. Boca Raton: CRC Press; 3rd edition 2009.

Note

Scripts for creation of these data.frames can be found in the /tests sub-directory of the package.
Comparing the results of these scripts to the corresponding data.frames can be used for validation purposes.

Author

PowerTOST

Examples

ct9.6.4
#>      CV power R0.0 R0.05 R0.1 R0.15
#> 1  0.10   0.8    4     4    8    28
#> 2  0.12   0.8    4     8   12    40
#> 3  0.14   0.8    8     8   16    52
#> 4  0.16   0.8    8     8   20    64
#> 5  0.18   0.8    8    12   24    84
#> 6  0.20   0.8   12    12   28   100
#> 7  0.22   0.8   12    16   32   124
#> 8  0.24   0.8   16    20   40   144
#> 9  0.26   0.8   16    20   44   168
#> 10 0.28   0.8   20    24   52   196
#> 11 0.30   0.8   20    28   60   224
#> 12 0.32   0.8   24    32   64   256
#> 13 0.34   0.8   28    36   72   288
#> 14 0.36   0.8   32    40   84   324
#> 15 0.38   0.8   32    44   92   360
#> 16 0.40   0.8   36    48  100   400
#> 17 0.10   0.9    4     8   12    36
#> 18 0.12   0.9    8     8   16    52
#> 19 0.14   0.9    8    12   20    68
#> 20 0.16   0.9    8    12   24    92
#> 21 0.18   0.9   12    16   32   112
#> 22 0.20   0.9   12    16   36   140
#> 23 0.22   0.9   16    20   44   168
#> 24 0.24   0.9   20    24   52   200
#> 25 0.26   0.9   20    28   60   236
#> 26 0.28   0.9   24    32   68   272
#> 27 0.30   0.9   28    36   80   312
#> 28 0.32   0.9   32    40   92   352
#> 29 0.34   0.9   32    48  100   400
#> 30 0.36   0.9   36    52  112   448
#> 31 0.38   0.9   40    56  128   496
#> 32 0.40   0.9   44    64  140   552
ct9.6.8
#>           CV power R0.85 R0.9 R0.95 R1.0 R1.05 R1.1 R1.15 R1.2
#> 1  0.1002505   0.8    20    8     4    4     4    8    12   40
#> 2  0.1204333   0.8    28    8     4    4     4    8    16   56
#> 3  0.1406888   0.8    36   12     8    8     8   12    20   76
#> 4  0.1610295   0.8    44   12     8    8     8   12    24   96
#> 5  0.1814679   0.8    56   16     8    8     8   16    32  124
#> 6  0.2020168   0.8    68   20    12    8    12   16    40  152
#> 7  0.2226890   0.8    84   24    12   12    12   20    44  184
#> 8  0.2434978   0.8   100   28    16   12    16   24    52  216
#> 9  0.2644565   0.8   116   32    16   16    16   28    64  252
#> 10 0.2855787   0.8   136   36    20   16    20   32    72  292
#> 11 0.3068783   0.8   152   44    20   20    20   36    84  336
#> 12 0.3283695   0.8   176   48    24   20    24   40    92  384
#> 13 0.3500668   0.8   196   56    28   24    28   48   104  432
#> 14 0.3719851   0.8   220   60    32   24    28   52   116  484
#> 15 0.3941398   0.8   244   68    32   28    32   56   132  540
#> 16 0.4165464   0.8   272   72    36   32    36   64   144  596
#> 17 0.1002505   0.9    24    8     4    4     4    8    16   52
#> 18 0.1204333   0.9    36   12     8    8     8   12    20   76
#> 19 0.1406888   0.9    48   16     8    8     8   12    28  104
#> 20 0.1610295   0.9    64   20    12    8     8   16    36  136
#> 21 0.1814679   0.9    80   24    12    8    12   20    44  168
#> 22 0.2020168   0.9    96   28    16   12    12   24    52  208
#> 23 0.2226890   0.9   116   32    16   12    16   28    64  252
#> 24 0.2434978   0.9   136   40    20   16    20   32    72  300
#> 25 0.2644565   0.9   160   44    24   16    20   36    84  348
#> 26 0.2855787   0.9   184   52    24   20    24   44   100  404
#> 27 0.3068783   0.9   212   60    28   24    28   48   112  464
#> 28 0.3283695   0.9   240   64    32   24    32   56   128  528
#> 29 0.3500668   0.9   272   72    36   28    36   64   144  596
#> 30 0.3719851   0.9   304   84    40   32    40   72   164  668
#> 31 0.3941398   0.9   340   92    44   36    44   80   180  744
#> 32 0.4165464   0.9   376  100    48   36    48   88   200  824