predict.rq.counts.Rd
This function computes predictions based on fitted linear quantile models.
# S3 method for class 'rq.counts'
predict(object, newdata, offset,
na.action = na.pass, type = "response",
namevec = NULL, ...)
an rq.counts
object.
an optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
an offset to be used with newdata
.
function determining what should be done with missing values in newdata
. The default is to predict NA
.
the type of prediction required. The default "response"
is on the scale of the response variable, i.e. the values are back-transformed using the inverse of the transformation \(h^{-1}(Xb)\); the alternative "link"
is on the scale of the linear predictors \(h(y) = Xb\); finally, predictions for marginal effects are given with "maref"
.
character giving the name of the covariate with respect to which the marginal effect is to be computed. If type = "maref"
, this argument is required. See maref.rq.counts
.
not used.
a vector or a matrix or an array of predictions.
# Esterase data
data(esterase)
# Fit quantiles 0.25 and 0.75
fit <- rq.counts(Count ~ Esterase, tau = 0.5, data = esterase, M = 50)
cbind(fit$fitted.values, predict(fit, type = "response"))
#> [,1] [,2]
#> 1 125.0889 125.0889
#> 2 141.4300 141.4300
#> 3 144.9469 144.9469
#> 4 147.0990 147.0990
#> 5 147.8235 147.8235
#> 6 149.2832 149.2832
#> 7 157.5741 157.5741
#> 8 159.1304 159.1304
#> 9 159.1304 159.1304
#> 10 159.9144 159.9144
#> 11 160.7022 160.7022
#> 12 162.2895 162.2895
#> 13 163.8925 163.8925
#> 14 163.8925 163.8925
#> 15 165.5115 165.5115
#> 16 167.1465 167.1465
#> 17 168.7976 168.7976
#> 18 171.3051 171.3051
#> 19 178.1760 178.1760
#> 20 179.9364 179.9364
#> 21 180.8232 180.8232
#> 22 182.6099 182.6099
#> 23 183.5098 183.5098
#> 24 184.4143 184.4143
#> 25 185.3232 185.3232
#> 26 186.2365 186.2365
#> 27 189.9354 189.9354
#> 28 189.9354 189.9354
#> 29 191.8124 191.8124
#> 30 194.6628 194.6628
#> 31 196.5866 196.5866
#> 32 199.5081 199.5081
#> 33 201.4800 201.4800
#> 34 201.4800 201.4800
#> 35 204.4744 204.4744
#> 36 204.4744 204.4744
#> 37 206.4954 206.4954
#> 38 206.4954 206.4954
#> 39 210.5978 210.5978
#> 40 211.6361 211.6361
#> 41 211.6361 211.6361
#> 42 212.6795 212.6795
#> 43 213.7281 213.7281
#> 44 214.7818 214.7818
#> 45 217.9744 217.9744
#> 46 220.1292 220.1292
#> 47 220.1292 220.1292
#> 48 220.1292 220.1292
#> 49 222.3054 222.3054
#> 50 224.5031 224.5031
#> 51 226.7226 226.7226
#> 52 226.7226 226.7226
#> 53 226.7226 226.7226
#> 54 233.5138 233.5138
#> 55 234.6654 234.6654
#> 56 235.8226 235.8226
#> 57 235.8226 235.8226
#> 58 236.9856 236.9856
#> 59 240.5090 240.5090
#> 60 246.4984 246.4984
#> 61 247.7141 247.7141
#> 62 248.9358 248.9358
#> 63 253.8834 253.8834
#> 64 256.3940 256.3940
#> 65 261.4900 261.4900
#> 66 270.6535 270.6535
#> 67 273.3303 273.3303
#> 68 276.0336 276.0336
#> 69 294.2697 294.2697
#> 70 294.2697 294.2697
#> 71 298.6467 298.6467
#> 72 298.6467 298.6467
#> 73 298.6467 298.6467
#> 74 300.1201 300.1201
#> 75 304.5842 304.5842
#> 76 307.5971 307.5971
#> 77 313.7129 313.7129
#> 78 313.7129 313.7129
#> 79 318.3795 318.3795
#> 80 332.8006 332.8006
#> 81 336.0932 336.0932
#> 82 341.0932 341.0932
#> 83 344.4679 344.4679
#> 84 346.1678 346.1678
#> 85 353.0517 353.0517
#> 86 356.5448 356.5448
#> 87 360.0726 360.0726
#> 88 370.8671 370.8671
#> 89 370.8671 370.8671
#> 90 376.3853 376.3853
#> 91 403.2438 403.2438
#> 92 409.2443 409.2443
#> 93 413.2942 413.2942
#> 94 419.4445 419.4445
#> 95 447.1724 447.1724
#> 96 447.1724 447.1724
#> 97 476.7353 476.7353
#> 98 488.6198 488.6198
#> 99 560.8682 560.8682
#> 100 606.8577 606.8577
#> 101 703.5041 703.5041
#> 102 717.5042 717.5042
#> 103 735.3971 735.3971
#> 104 787.9084 787.9084
#> 105 803.5894 803.5894
#> 106 815.5547 815.5547
#> 107 835.8945 835.8945
#> 108 959.5442 959.5442
#> 109 983.4772 983.4772
#> 110 1064.1503 1064.1503
#> 111 1388.5688 1388.5688
#> 112 1395.4285 1395.4285
#> 113 1416.2118 1416.2118