Calculate 1D likelihood profiles wrt. single parameters or more generally, wrt. arbitrary linear combinations of parameters (e.g. contrasts).
Object from MakeADFun that has been optimized.
Name or index of a parameter to profile.
Optional linear combination of parameters to
profile. By default a unit vector corresponding to name.
Initial adaptive stepsize on parameter axis.
Adjusts the range of the likelihood values.
Adjusts the resolution of the likelihood profile.
Max number of iterations for adaptive algorithm.
Valid parameter range.
Do slicing rather than profiling?
Logical; Use adaptive step size?
Trace progress? (TRUE, or a numeric value of 1, gives basic tracing: numeric values > 1 give more information)
Unused
data.frame with parameter and function values.
Given a linear combination $$ t = \sum_{i=1}^n v_i \theta_i $$ of
the parameter vector \(\theta\), this function calculates the
likelihood profile of \(t\). By default \(v\) is a unit vector
determined from name. Alternatively the linear combination
may be given directly (lincomb).
if (FALSE) { # \dontrun{
runExample("simple",thisR=TRUE)
## Parameter names for this model:
## beta beta logsdu logsd0
## Profile wrt. sigma0:
prof <- tmbprofile(obj,"logsd0")
plot(prof)
confint(prof)
## Profile the difference between the beta parameters (name is optional):
prof2 <- tmbprofile(obj,name="beta1 - beta2",lincomb = c(1,-1,0,0))
plot(prof2)
confint(prof2)
} # }