Inv.gaussian.RdDensity, distribution function and random generation for the inverse Gaussian distribution.
dinv.gaussian(x, mu, lambda, log = FALSE)
pinv.gaussian(q, mu, lambda)
rinv.gaussian(n, mu, lambda)dinv.gaussian gives the density,
pinv.gaussian gives the distribution function, and
rinv.gaussian generates random deviates.
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd edition, Volume 1, New York: Wiley.
Taraldsen, G. and Lindqvist, B. H. (2005). The multiple roots simulation algorithm, the inverse Gaussian distribution, and the sufficient conditional Monte Carlo method. Preprint Statistics No. 4/2005, Norwegian University of Science and Technology, Trondheim, Norway.
See inv.gaussianff, the VGAM family function
for estimating both parameters by maximum likelihood estimation,
for the formula of the probability density function.
Currently qinv.gaussian is unavailable.
if (FALSE) x <- seq(-0.05, 4, len = 300)
plot(x, dinv.gaussian(x, mu = 1, lambda = 1), type = "l",
col = "blue",las = 1, main =
"blue is density, orange is cumulative distribution function")
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'x' not found
abline(h = 0, col = "gray", lty = 2)
#> Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...): plot.new has not been called yet
lines(x, pinv.gaussian(x, mu = 1, lambda = 1), type = "l", col = "orange") # \dontrun{}
#> Error: object 'x' not found