MNSs.RdEstimates the three independent parameters of the the MNSs blood group system.
MNSs(link = "logitlink", imS = NULL, ims = NULL, inS = NULL)Link function applied to the three parameters.
See Links for more choices.
Optional initial value for mS, ms
and nS respectively.
A NULL means they are computed internally.
There are three independent
parameters: m_S, m_s, n_S, say, so that
n_s = 1 - m_S - m_s - n_S.
We let the eta vector (transposed) be
(g(m_S), g(m_s), g(n_S)) where g is the
link function.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm
and vgam.
Elandt-Johnson, R. C. (1971). Probability Models and Statistical Methods in Genetics, New York: Wiley.
The input can be a 6-column matrix of counts, where the columns are
MS, Ms, MNS, MNs, NS, Ns (in order).
Alternatively, the input can be a 6-column matrix of
proportions (so each row adds to 1) and the weights
argument is used to specify the total number of counts for each row.
AA.Aa.aa,
AB.Ab.aB.ab,
ABO,
A1A2A3.
# Order matters only:
y <- cbind(MS = 295, Ms = 107, MNS = 379, MNs = 322, NS = 102, Ns = 214)
fit <- vglm(y ~ 1, MNSs("logitlink", .25, .28, .08), trace = TRUE)
#> Iteration 1: deviance = 1.752635
#> Iteration 2: deviance = 1.752591
#> Iteration 3: deviance = 1.75259
fit <- vglm(y ~ 1, MNSs(link = logitlink), trace = TRUE, crit = "coef")
#> Iteration 1: coefficients =
#> -1.11324317, -0.92882439, -2.43891461
#> Iteration 2: coefficients =
#> -1.11331541, -0.92938385, -2.43952450
#> Iteration 3: coefficients =
#> -1.1133252, -0.9293749, -2.4394867
#> Iteration 4: coefficients =
#> -1.11332484, -0.92937527, -2.43948828
#> Iteration 5: coefficients =
#> -1.11332486, -0.92937526, -2.43948821
Coef(fit)
#> mS ms nS
#> 0.24725155 0.28305148 0.08021066
rbind(y, sum(y)*fitted(fit))
#> MS Ms MNS MNs NS Ns
#> 295.0000 107.0000 379.0000 322.0000 102.00000 214.0000
#> 1 285.3654 113.6876 394.0196 312.8744 97.79132 215.2617
sqrt(diag(vcov(fit)))
#> (Intercept):1 (Intercept):2 (Intercept):3
#> 0.05146917 0.04870453 0.09795120