biamhcopUC.RdDensity, distribution function, and random generation for the (one parameter) bivariate Ali-Mikhail-Haq distribution.
dbiamhcop(x1, x2, apar, log = FALSE)
pbiamhcop(q1, q2, apar)
rbiamhcop(n, apar)vector of quantiles.
number of observations.
Same as runif
the association parameter.
Logical.
If TRUE then the logarithm is returned.
dbiamhcop gives the density,
pbiamhcop gives the distribution function, and
rbiamhcop generates random deviates (a two-column matrix).
See biamhcop, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation, for the formula of
the cumulative distribution function and other details.
x <- seq(0, 1, len = (N <- 101)); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiamhcop(ox[, 1], ox[, 2], apar = apar)
if (FALSE) { # \dontrun{
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbiamhcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")
plot(r <- rbiamhcop(n = 1000, apar = apar), col = "blue")
par(mfrow = c(1, 2))
hist(r[, 1]) # Should be uniform
hist(r[, 2]) # Should be uniform
} # }