biclaytoncopUC.RdDensity and random generation for the (one parameter) bivariate Clayton copula distribution.
dbiclaytoncop(x1, x2, apar = 0, log = FALSE)
rbiclaytoncop(n, apar = 0)vector of quantiles.
The x1 and x2 should both be
in the interval \((0,1)\).
number of observations.
Same as rnorm.
the association parameter. Should be in the interval \([0, \infty)\). The default corresponds to independence.
Logical.
If TRUE then the logarithm is returned.
dbiclaytoncop gives the density at point
(x1,x2),
rbiclaytoncop generates random
deviates (a two-column matrix).
Clayton, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society, Series B, Methodological, 44, 414–422.
See biclaytoncop, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation,
for the formula of the
cumulative distribution function and other
details.
dbiclaytoncop() does not yet handle
x1 = 0 and/or x2 = 0.
if (FALSE) edge <- 0.01 # A small positive value
N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7
#> Error: object 'edge' not found
ox <- expand.grid(x, x)
#> Error: object 'x' not found
zedd <- dbiclaytoncop(ox[, 1], ox[, 2], apar = Rho, log = TRUE)
#> Error: object 'ox' not found
par(mfrow = c(1, 2))
contour(x, x, matrix(zedd, N, N), col = 4, labcex = 1.5, las = 1)
#> Error: object 'x' not found
plot(rbiclaytoncop(1000, 2), col = 4, las = 1) # \dontrun{}