bigumbelIexp.RdEstimate the association parameter of Gumbel's Type I bivariate distribution by maximum likelihood estimation.
bigumbelIexp(lapar = "identitylink", iapar = NULL, imethod = 1)Link function applied to the association parameter
\(\alpha\).
See Links for more choices.
Numeric. Optional initial value for \(\alpha\).
By default, an initial value is chosen internally.
If a convergence failure occurs try assigning a different value.
Assigning a value will override the argument imethod.
An integer with value 1 or 2 which
specifies the initialization method. If failure to converge occurs
try the other value, or else specify a value for ia.
The cumulative distribution function is $$P(Y_1 \leq y_1, Y_2 \leq y_2) = e^{-y_1-y_2+\alpha y_1 y_2} + 1 - e^{-y_1} - e^{-y_2} $$ for real \(\alpha\). The support of the function is for \(y_1>0\) and \(y_2>0\). The marginal distributions are an exponential distribution with unit mean.
A variant of Newton-Raphson is used, which only seems
to work for an intercept model.
It is a very good idea to set trace=TRUE.
An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm
and vgam.
Gumbel, E. J. (1960). Bivariate Exponential Distributions. Journal of the American Statistical Association, 55, 698–707.
The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns and values equal to 1. This is because each marginal distribution corresponds to a exponential distribution with unit mean.
This VGAM family function should be used with caution.
nn <- 1000
gdata <- data.frame(y1 = rexp(nn), y2 = rexp(nn))
if (FALSE) with(gdata, plot(cbind(y1, y2))) # \dontrun{}
fit <- vglm(cbind(y1, y2) ~ 1, bigumbelIexp, gdata, trace = TRUE)
#> Iteration 1: loglikelihood = -2043.3139
#> Iteration 2: loglikelihood = -2042.999
#> Iteration 3: loglikelihood = -2042.9984
#> Iteration 4: loglikelihood = -2042.9984
coef(fit, matrix = TRUE)
#> apar
#> (Intercept) -0.04082615
Coef(fit)
#> apar
#> -0.04082615
head(fitted(fit))
#> y1 y2
#> 1 1 1
#> 2 1 1
#> 3 1 1
#> 4 1 1
#> 5 1 1
#> 6 1 1