Estimates the parameter of a Felix distribution by maximum likelihood estimation.

felix(lrate = "extlogitlink(min = 0, max = 0.5)", imethod = 1)

Arguments

lrate

Link function for the parameter, called \(a\) below; see Links for more choices and for general information.

imethod

See CommonVGAMffArguments. Valid values are 1, 2, 3 or 4.

Details

The Felix distribution is an important basic Lagrangian distribution. The density function is $$f(y;a) = \frac{ 1 }{((y-1)/2)!} y^{(y-3)/2} a^{(y-1)/2} \exp(-ay) $$ where \(y=1,3,5,\ldots\) and \(0 < a < 0.5\). The mean is \(1/(1-2a)\) (returned as the fitted values). Fisher scoring is implemented.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

References

Consul, P. C. and Famoye, F. (2006). Lagrangian Probability Distributions, Boston, USA: Birkhauser.

Author

T. W. Yee

See also

Examples

fdata <- data.frame(y = 2 * rpois(n = 200, 1) + 1)  # Not real data!
fit <- vglm(y ~ 1, felix, data = fdata, trace = TRUE, crit = "coef")
#> Iteration 1: coefficients = 0.11480955
#> Iteration 2: coefficients = 0.88005067
#> Iteration 3: coefficients = 0.70127922
#> Iteration 4: coefficients = 0.68326115
#> Iteration 5: coefficients = 0.68309686
#> Iteration 6: coefficients = 0.68309684
coef(fit, matrix = TRUE)
#>             extlogitlink(rate, min = 0, max = 0.5)
#> (Intercept)                              0.6830968
Coef(fit)
#>      rate 
#> 0.3322148 
summary(fit)
#> 
#> Call:
#> vglm(formula = y ~ 1, family = felix, data = fdata, trace = TRUE, 
#>     crit = "coef")
#> 
#> Coefficients: 
#>             Estimate Std. Error z value Pr(>|z|)   
#> (Intercept)   0.6831     0.2118   3.226  0.00126 **
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Name of linear predictor: extlogitlink(rate, min = 0, max = 0.5) 
#> 
#> Log-likelihood: -350.7791 on 199 degrees of freedom
#> 
#> Number of Fisher scoring iterations: 6 
#> 
#> No Hauck-Donner effect found in any of the estimates
#>