gensh.RdEstimation of the parameters of the generalized secant hyperbolic distribution.
Numeric of length 1. Shape parameter, called \(t\) in Vaughan (2002). Valid values are \(-\pi/2 < t\).
Parameter link functions applied to the
two parameters.
See Links for more choices.
See CommonVGAMffArguments
for more information.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for information.
The probability density function of the hyperbolic secant distribution is given by $$f(y; a, b, s) = [(c_1 / b) \; \exp(c_2 z)] / [ \exp(2 c_2 z) + 2 C_3 \exp(c_2 z) + 1]$$ for shape parameter \(-\pi < s\) and all real \(y\). The scalars \(c_1\), \(c_2\), \(C_3\) are functions of \(s\). The mean of \(Y\) is the location parameter \(a\) (returned as the fitted values). All moments of the distribution are finite.
Further details about
the parameterization can be found
in Vaughan (2002).
Fisher scoring is implemented and it has
a diagonal EIM.
More details are at
Gensh.
An object of class "vglmff"
(see vglmff-class).
The object is used by modelling functions
such as vglm,
and vgam.
Vaughan, D. C. (2002). The generalized secant hyperbolic distribution and its properties. Communications in Statistics—Theory and Methods, 31(2): 219–238.
hypersecant,
logistic.
sh <- -pi / 2; loc <- 2
hdata <- data.frame(x2 = rnorm(nn <- 200))
hdata <- transform(hdata, y = rgensh(nn, sh, loc))
fit <- vglm(y ~ x2, gensh(sh), hdata, trace = TRUE)
#> Iteration 1: loglikelihood = -296.91201
#> Iteration 2: loglikelihood = -296.90211
#> Iteration 3: loglikelihood = -296.9021
#> Iteration 4: loglikelihood = -296.9021
coef(fit, matrix = TRUE)
#> location loglink(scale)
#> (Intercept) 2.04071529 0.103929
#> x2 0.05527216 0.000000