hzeta.RdEstimating the parameter of Haight's zeta distribution
hzeta(lshape = "logloglink", ishape = NULL, nsimEIM = 100)Parameter link function for the parameter,
called \(\alpha\) below.
See Links for more choices.
Here, a log-log link keeps the parameter greater than one, meaning
the mean is finite.
See CommonVGAMffArguments for more information.
The probability function is
$$f(y) = (2y-1)^{(-\alpha)} - (2y+1)^{(-\alpha)},$$
where the parameter \(\alpha>0\)
and \(y=1,2,\ldots\).
The function dhzeta computes this probability function.
The mean of \(Y\), which is returned as fitted values, is
\((1-2^{-\alpha}) \zeta(\alpha)\)
provided \(\alpha > 1\), where \(\zeta\) is
Riemann's zeta function.
The mean is a decreasing function of \(\alpha\).
The mean is infinite if \(\alpha \leq 1\), and
the variance is infinite if \(\alpha \leq 2\).
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm
and vgam.
Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition, pp.533–4. Hoboken, New Jersey: Wiley.
Hzeta,
zeta,
zetaff,
loglog,
simulate.vlm.
shape <- exp(exp(-0.1)) # The parameter
hdata <- data.frame(y = rhzeta(n = 1000, shape))
fit <- vglm(y ~ 1, hzeta, data = hdata, trace = TRUE, crit = "coef")
#> Iteration 1: coefficients = -0.035437558
#> Iteration 2: coefficients = -0.12904235
#> Iteration 3: coefficients = -0.16134991
#> Iteration 4: coefficients = -0.16391286
#> Iteration 5: coefficients = -0.16391049
#> Iteration 6: coefficients = -0.1639105
#> Iteration 7: coefficients = -0.1639105
coef(fit, matrix = TRUE)
#> logloglink(shape)
#> (Intercept) -0.1639105
Coef(fit) # Useful for intercept-only models; should be same as shape
#> shape
#> 2.336883
c(with(hdata, mean(y)), head(fitted(fit), 1))
#> [1] 1.130000 1.133614
summary(fit)
#>
#> Call:
#> vglm(formula = y ~ 1, family = hzeta, data = hdata, trace = TRUE,
#> crit = "coef")
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.16391 0.04756 -3.446 0.000568 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Name of linear predictor: logloglink(shape)
#>
#> Log-likelihood: -353.3895 on 999 degrees of freedom
#>
#> Number of Fisher scoring iterations: 7
#>
#> No Hauck-Donner effect found in any of the estimates
#>