Estimates the two parameters of an inverse binomial distribution by maximum likelihood estimation.

inv.binomial(lrho = "extlogitlink(min = 0.5, max = 1)",
    llambda = "loglink", irho = NULL, ilambda = NULL, zero = NULL)

Arguments

lrho, llambda

Link function for the \(\rho\) and \(\lambda\) parameters. See Links for more choices.

irho, ilambda

Numeric. Optional initial values for \(\rho\) and \(\lambda\).

zero

See CommonVGAMffArguments.

Details

The inverse binomial distribution of Yanagimoto (1989) has density function $$f(y;\rho,\lambda) = \frac{ \lambda \,\Gamma(2y+\lambda) }{\Gamma(y+1) \, \Gamma(y+\lambda+1) } \{ \rho(1-\rho) \}^y \rho^{\lambda}$$ where \(y=0,1,2,\ldots\) and \(\frac12 < \rho < 1\), and \(\lambda > 0\). The first two moments exist for \(\rho>\frac12\); then the mean is \(\lambda (1-\rho) /(2 \rho-1)\) (returned as the fitted values) and the variance is \(\lambda \rho (1-\rho) /(2 \rho-1)^3\). The inverse binomial distribution is a special case of the generalized negative binomial distribution of Jain and Consul (1971). It holds that \(Var(Y) > E(Y)\) so that the inverse binomial distribution is overdispersed compared with the Poisson distribution.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm and vgam.

References

Yanagimoto, T. (1989). The inverse binomial distribution as a statistical model. Communications in Statistics: Theory and Methods, 18, 3625–3633.

Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distribution. SIAM Journal on Applied Mathematics, 21, 501–513.

Jorgensen, B. (1997). The Theory of Dispersion Models. London: Chapman & Hall

Author

T. W. Yee

Note

This VGAM family function only works reasonably well with intercept-only models. Good initial values are needed; if convergence failure occurs use irho and/or ilambda.

Some elements of the working weight matrices use the expected information matrix while other elements use the observed information matrix. Yet to do: using the mean and the reciprocal of \(\lambda\) results in an EIM that is diagonal.

See also

Examples

idata <- data.frame(y = rnbinom(n <- 1000, mu = exp(3), size = exp(1)))
fit <- vglm(y ~ 1, inv.binomial, data = idata, trace = TRUE)
#> Iteration 1: loglikelihood = -246318.9
#> Iteration 2: loglikelihood = -245324.08
#> Iteration 3: loglikelihood = -244341.44
#> Iteration 4: loglikelihood = -243391.08
#> Iteration 5: loglikelihood = -242522.41
#> Iteration 6: loglikelihood = -241837.76
#> Iteration 7: loglikelihood = -241464.45
#> Iteration 8: loglikelihood = -241375.16
#> Iteration 9: loglikelihood = -241370.96
#> Iteration 10: loglikelihood = -241370.95
#> Iteration 11: loglikelihood = -241370.95
with(idata, c(mean(y), head(fitted(fit), 1)))
#> [1] 20.291 20.291
summary(fit)
#> 
#> Call:
#> vglm(formula = y ~ 1, family = inv.binomial, data = idata, trace = TRUE)
#> 
#> Coefficients: 
#>               Estimate Std. Error z value Pr(>|z|)    
#> (Intercept):1 -5.64687    1.41462  -3.992 6.56e-05 ***
#> (Intercept):2 -1.94354    0.03156 -61.583  < 2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Names of linear predictors: extlogitlink(rho, min = 0.5, max = 1), 
#> loglink(lambda)
#> 
#> Log-likelihood: -241371 on 1998 degrees of freedom
#> 
#> Number of Fisher scoring iterations: 11 
#> 
#> Warning: Hauck-Donner effect detected in the following estimate(s):
#> '(Intercept):1'
#> 
coef(fit, matrix = TRUE)
#>             extlogitlink(rho, min = 0.5, max = 1) loglink(lambda)
#> (Intercept)                             -5.646867       -1.943542
Coef(fit)
#>       rho    lambda 
#> 0.5017581 0.1431958 
sum(weights(fit))  # Sum of the prior weights
#> [1] 1000
sum(weights(fit, type = "work"))  # Sum of the working weights
#> [1] 1004.513