A data frame with yellow-bellied Prinia.

data(prinia)

Format

A data frame with 151 observations on the following 23 variables.

length

a numeric vector, the scaled wing length (zero mean and unit variance).

fat

a numeric vector, fat index; originally 1 (no fat) to 4 (very fat) but converted to 0 (no fat) versus 1 otherwise.

cap

a numeric vector, number of times the bird was captured or recaptured.

noncap

a numeric vector, number of times the bird was not captured.

y01, y02, y03, y04, y05, y06

a numeric vector of 0s and 1s; for noncapture and capture resp.

y07, y08, y09, y10, y11, y12

same as above.

y13, y14, y15, y16, y17, y18, y19

same as above.

Details

The yellow-bellied Prinia Prinia flaviventris is a common bird species located in Southeast Asia. A capture–recapture experiment was conducted at the Mai Po Nature Reserve in Hong Kong during 1991, where captured individuals had their wing lengths measured and fat index recorded. A total of 19 weekly capture occasions were considered, where 151 distinct birds were captured.

More generally, the prinias are a genus of small insectivorous birds, and are sometimes referred to as wren-warblers. They are a little-known group of the tropical and subtropical Old World, the roughly 30 species being divided fairly equally between Africa and Asia.

Source

Thanks to Paul Yip for permission to make this data available.

Hwang, W.-H. and Huggins, R. M. (2007) Application of semiparametric regression models in the analysis of capture–recapture experiments. Australian and New Zealand Journal of Statistics 49, 191–202.

Examples

head(prinia)
#>        length fat cap noncap y01 y02 y03 y04 y05 y06 y07 y08 y09 y10 y11 y12
#> 1  1.00650390   1   5     14   0   0   0   0   0   0   0   0   1   1   1   1
#> 2  1.26462566   1   3     16   0   0   0   0   0   0   0   0   1   0   1   1
#> 3 -0.02598312   1   6     13   0   0   0   0   0   0   1   0   1   0   0   0
#> 4  3.07147795   0   1     18   0   0   0   0   0   0   0   0   1   0   0   0
#> 5  0.43863604   1   5     14   0   1   0   0   0   0   0   0   0   0   1   1
#> 6  0.74838215   0   1     18   0   0   0   0   0   0   0   0   0   0   0   0
#>   y13 y14 y15 y16 y17 y18 y19
#> 1   1   0   0   0   0   0   0
#> 2   0   0   0   0   0   0   0
#> 3   0   1   0   0   1   1   1
#> 4   0   0   0   0   0   0   0
#> 5   0   1   0   0   1   0   0
#> 6   0   0   1   0   0   0   0
summary(prinia)
#>      length              fat              cap            noncap     
#>  Min.   :-2.34908   Min.   :0.0000   Min.   :1.000   Min.   :13.00  
#>  1st Qu.:-0.80035   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:18.00  
#>  Median :-0.02598   Median :1.0000   Median :1.000   Median :18.00  
#>  Mean   : 0.00000   Mean   :0.5762   Mean   :1.477   Mean   :17.52  
#>  3rd Qu.: 0.74838   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:18.00  
#>  Max.   : 3.07148   Max.   :1.0000   Max.   :6.000   Max.   :18.00  
#>       y01                y02              y03               y04         
#>  Min.   :0.000000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
#>  1st Qu.:0.000000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
#>  Median :0.000000   Median :0.0000   Median :0.00000   Median :0.00000  
#>  Mean   :0.006622   Mean   :0.1325   Mean   :0.02649   Mean   :0.01324  
#>  3rd Qu.:0.000000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
#>  Max.   :1.000000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
#>       y05               y06              y07              y08         
#>  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
#>  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
#>  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
#>  Mean   :0.04636   Mean   :0.0596   Mean   :0.1854   Mean   :0.06623  
#>  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
#>  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
#>       y09               y10              y11             y12       
#>  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
#>  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000  
#>  Median :0.00000   Median :0.0000   Median :0.000   Median :0.000  
#>  Mean   :0.09272   Mean   :0.1457   Mean   :0.106   Mean   :0.106  
#>  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.000  
#>  Max.   :1.00000   Max.   :1.0000   Max.   :1.000   Max.   :1.000  
#>       y13               y14              y15              y16         
#>  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
#>  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
#>  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
#>  Mean   :0.09272   Mean   :0.0596   Mean   :0.1722   Mean   :0.03311  
#>  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
#>  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
#>       y17               y18               y19         
#>  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
#>  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
#>  Median :0.00000   Median :0.00000   Median :0.00000  
#>  Mean   :0.03974   Mean   :0.03974   Mean   :0.05298  
#>  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
#>  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
rowSums(prinia[, c("cap", "noncap")])  # 19s
#>   [1] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#>  [26] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#>  [51] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#>  [76] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#> [101] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#> [126] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
#> [151] 19

#  Fit a positive-binomial distribution (M.h) to the data:
fit1 <- vglm(cbind(cap, noncap) ~ length + fat, posbinomial, prinia)

#  Fit another positive-binomial distribution (M.h) to the data:
#  The response input is suitable for posbernoulli.*-type functions.
fit2 <- vglm(cbind(y01, y02, y03, y04, y05, y06, y07, y08, y09, y10,
                   y11, y12, y13, y14, y15, y16, y17, y18, y19) ~
             length + fat, posbernoulli.b(drop.b = FALSE ~ 0), prinia)