sinmadUC.RdDensity, distribution function, quantile function and
random generation for the Singh-Maddala distribution with
shape parameters a and q, and scale parameter
scale.
dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE)
psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
rsinmad(n, scale = 1, shape1.a, shape3.q)dsinmad gives the density,
psinmad gives the distribution function,
qsinmad gives the quantile function, and
rsinmad generates random deviates.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See sinmad, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
The Singh-Maddala distribution is a special case of the 4-parameter generalized beta II distribution.
sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2),
shape1 = exp(1), shape3 = exp(1)))
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata,
trace = TRUE, crit = "coef")
#> Iteration 1: coefficients =
#> 0.88881958, 2.17683540, 1.21381205
#> Iteration 2: coefficients =
#> 0.96155309, 1.99281771, 0.96247712
#> Iteration 3: coefficients =
#> 0.96853041, 1.99928278, 0.96680068
#> Iteration 4: coefficients =
#> 0.96850237, 1.99952103, 0.96733261
#> Iteration 5: coefficients =
#> 0.96849391, 1.99954554, 0.96737736
#> Iteration 6: coefficients =
#> 0.96849312, 1.99954791, 0.96738169
#> Iteration 7: coefficients =
#> 0.96849305, 1.99954813, 0.96738211
#> Iteration 8: coefficients =
#> 0.96849304, 1.99954816, 0.96738215
coef(fit, matrix = TRUE)
#> loglink(shape1.a) loglink(scale) loglink(shape3.q)
#> (Intercept) 0.968493 1.999548 0.9673822
Coef(fit)
#> shape1.a scale shape3.q
#> 2.633972 7.385718 2.631048