The function fits the log linear model (“Procedure II”) proposed by Breslow (1984) accounting for overdispersion in counts \(y\).

quasipois(formula, data, phi = NULL, tol = 0.001)

Arguments

formula

A formula for the fixed effects. The left-hand side of the formula must be the counts y i.e., positive integers (y >= 0). The right-hand side can involve an offset term.

data

A data frame containing the response (y) and explanatory variable(s).

phi

When phi is NULL (the default), the overdispersion parameter \(\phi\) is estimated from the data. Otherwise, its value is considered as fixed.

tol

A positive scalar (default to 0.001). The algorithm stops at iteration \(r + 1\) when the condition \(\chi{^2}[r+1] - \chi{^2}[r] <= tol\) is met by the \(\chi^2\) statistics .

Details

For a given count \(y\), the model is: $$y~|~\lambda \sim Poisson(~\lambda)$$ with \(\lambda\) a random variable of mean \(E[\lambda] = \mu\) and variance \(Var[\lambda] = \phi * \mu^2\).
The marginal mean and variance are: $$E[y] = \mu$$ $$Var[y] = \mu + \phi * \mu^2$$ The function uses the function glm and the parameterization: \(\mu = exp(X b) = exp(\eta)\), where \(X\) is a design-matrix, \(b\) is a vector of fixed effects and \(\eta = X b\) is the linear predictor.
The estimate of \(b\) maximizes the quasi log-likelihood of the marginal model. The parameter \(\phi\) is estimated with the moment method or can be set to a constant (a regular glim is fitted when \(\phi\) is set to 0). The literature recommends to estimate \(\phi\) with the saturated model. Several explanatory variables are allowed in \(b\). None is allowed in \(\phi\).
An offset can be specified in the argument formula to model rates \(y/T\) (see examples). The offset and the marginal mean are \(log(T)\) and \(\mu = exp(log(T) + \eta)\), respectively.

Value

An object of formal class “glimQL”: see glimQL-class for details.

References

Breslow, N.E., 1984. Extra-Poisson variation in log-linear models. Appl. Statist. 33, 38-44.
Moore, D.F., Tsiatis, A., 1991. Robust estimation of the variance in moment methods for extra-binomial and extra-poisson variation. Biometrics 47, 383-401.

Author

Matthieu Lesnoff matthieu.lesnoff@cirad.fr, Renaud Lancelot renaud.lancelot@cirad.fr

See also

glm, negative.binomial in the recommended package MASS, geese in the contributed package geepack, glm.poisson.disp in the contributed package dispmod.

Examples

  # without offset
  data(salmonella)
  quasipois(y ~ log(dose + 10) + dose,
            data = salmonella)
#> Quasi-likelihood generalized linear model
#> -----------------------------------------
#> quasipois(formula = y ~ log(dose + 10) + dose, data = salmonella)
#> 
#> Fixed-effect coefficients:
#>                Estimate Std. Error z value Pr(>|z|)
#> (Intercept)      2.2031     0.3636  6.0591   < 1e-4
#> log(dose + 10)   0.3110     0.0991  3.1394   0.0017
#> dose            -0.0010     0.0004 -2.2284   0.0259
#> 
#> Overdispersion parameter:
#>    phi 
#> 0.0718 
#> 
#> Pearson's chi-squared goodness-of-fit statistic = 15.0004 
#> 
  quasipois(y ~ log(dose + 10) + dose, 
            data = salmonella, phi = 0.07180449)
#> Quasi-likelihood generalized linear model
#> -----------------------------------------
#> quasipois(formula = y ~ log(dose + 10) + dose, data = salmonella, 
#>     phi = 0.07180449)
#> 
#> Fixed-effect coefficients:
#>                Estimate Std. Error z value Pr(>|z|)
#> (Intercept)      2.2031     0.3636  6.0591   < 1e-4
#> log(dose + 10)   0.3110     0.0991  3.1394   0.0017
#> dose            -0.0010     0.0004 -2.2284   0.0259
#> 
#> Overdispersion parameter:
#>    phi 
#> 0.0718 
#> 
#> Pearson's chi-squared goodness-of-fit statistic = 15.0004 
#> 
  summary(glm(y ~ log(dose + 10) + dose,
          family = poisson, data = salmonella))
#> 
#> Call:
#> glm(formula = y ~ log(dose + 10) + dose, family = poisson, data = salmonella)
#> 
#> Coefficients:
#>                  Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)     2.1727730  0.2184269   9.947  < 2e-16 ***
#> log(dose + 10)  0.3198250  0.0570014   5.611 2.01e-08 ***
#> dose           -0.0010130  0.0002452  -4.131 3.61e-05 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> (Dispersion parameter for poisson family taken to be 1)
#> 
#>     Null deviance: 78.358  on 17  degrees of freedom
#> Residual deviance: 43.716  on 15  degrees of freedom
#> AIC: 142.25
#> 
#> Number of Fisher Scoring iterations: 4
#> 
  quasipois(y ~ log(dose + 10) + dose,
          data = salmonella, phi = 0)
#> Quasi-likelihood generalized linear model
#> -----------------------------------------
#> quasipois(formula = y ~ log(dose + 10) + dose, data = salmonella, 
#>     phi = 0)
#> 
#> Fixed-effect coefficients:
#>                Estimate Std. Error z value Pr(>|z|)
#> (Intercept)      2.1728     0.2184  9.9474   < 1e-4
#> log(dose + 10)   0.3198     0.0570  5.6108   < 1e-4
#> dose            -0.0010     0.0002 -4.1311   < 1e-4
#> 
#> Overdispersion parameter:
#> phi 
#>   0 
#> 
#> Pearson's chi-squared goodness-of-fit statistic = 46.2707 
#> 
  # with offset
  data(cohorts)
  i <- cohorts$age ; levels(i) <- 1:7
  j <- cohorts$period ; levels(j) <- 1:7
  i <- as.numeric(i); j <- as.numeric(j)
  cohorts$cohort <- j + max(i) - i
  cohorts$cohort <- as.factor(1850 + 5 * cohorts$cohort)
  fm1 <- quasipois(y ~ age + period + cohort + offset(log(n)),
                   data = cohorts)
  fm1
#> Quasi-likelihood generalized linear model
#> -----------------------------------------
#> quasipois(formula = y ~ age + period + cohort + offset(log(n)), 
#>     data = cohorts)
#> 
#> Fixed-effect coefficients:
#>             Estimate Std. Error   z value Pr(>|z|)
#> (Intercept)  -8.0269     0.0750 -106.9987   < 1e-4
#> age55-        0.7222     0.0432   16.7251   < 1e-4
#> age60-        1.3511     0.0463   29.1893   < 1e-4
#> age65-        1.8291     0.0523   35.0026   < 1e-4
#> age70-        2.2917     0.0604   37.9489   < 1e-4
#> age75-        2.6606     0.0698   38.0943   < 1e-4
#> age80-        2.8568     0.0750   38.0816   < 1e-4
#> period1940-   0.1134     0.0448    2.5337   0.0113
#> period1945-   0.2490     0.0473    5.2633   < 1e-4
#> period1950-   0.3920     0.0529    7.4086   < 1e-4
#> period1955-   0.4630     0.0606    7.6418   < 1e-4
#> period1960-   0.5186     0.0695    7.4648   < 1e-4
#> period1965-   0.6386     0.0750    8.5130   < 1e-4
#> cohort1860    0.2453     0.1249    1.9643   0.0495
#> cohort1865    0.2928     0.1099    2.6644   0.0077
#> cohort1870    0.4258     0.0996    4.2732   < 1e-4
#> cohort1875    0.5545     0.0919    6.0317   < 1e-4
#> cohort1880    0.5954     0.0857    6.9451   < 1e-4
#> cohort1885    0.6436     0.0798    8.0611   < 1e-4
#> cohort1890    0.7819     0.0793    9.8547   < 1e-4
#> cohort1895    0.7082     0.0796    8.8992   < 1e-4
#> cohort1900    0.6599     0.0818    8.0692   < 1e-4
#> cohort1905    0.4080     0.0870    4.6919   < 1e-4
#> cohort1910    0.2246     0.0955    2.3511   0.0187
#> cohort1915        NA         NA        NA     <NA>
#> 
#> Overdispersion parameter:
#>    phi 
#> 0.0033 
#> 
#> Pearson's chi-squared goodness-of-fit statistic = 25.0004 
#> 
  quasipois(y ~ age + cohort + offset(log(n)),
            data = cohorts, phi = fm1@phi)
#> Quasi-likelihood generalized linear model
#> -----------------------------------------
#> quasipois(formula = y ~ age + cohort + offset(log(n)), data = cohorts, 
#>     phi = fm1@phi)
#> 
#> Fixed-effect coefficients:
#>             Estimate Std. Error  z value Pr(>|z|)
#> (Intercept)  -8.6441     0.1236 -69.9115   < 1e-4
#> age55-        0.8225     0.0436  18.8858   < 1e-4
#> age60-        1.5490     0.0441  35.1408   < 1e-4
#> age65-        2.1276     0.0450  47.2789   < 1e-4
#> age70-        2.6960     0.0466  57.8405   < 1e-4
#> age75-        3.1715     0.0487  65.0778   < 1e-4
#> age80-        3.4741     0.0520  66.8309   < 1e-4
#> cohort1860    0.3550     0.1312   2.7055   0.0068
#> cohort1865    0.5194     0.1237   4.1982   < 1e-4
#> cohort1870    0.7743     0.1208   6.4082   < 1e-4
#> cohort1875    1.0121     0.1196   8.4596   < 1e-4
#> cohort1880    1.1508     0.1190   9.6676   < 1e-4
#> cohort1885    1.2996     0.1187  10.9467   < 1e-4
#> cohort1890    1.5449     0.1206  12.8121   < 1e-4
#> cohort1895    1.5749     0.1217  12.9435   < 1e-4
#> cohort1900    1.6271     0.1232  13.2088   < 1e-4
#> cohort1905    1.4643     0.1260  11.6223   < 1e-4
#> cohort1910    1.3720     0.1314  10.4435   < 1e-4
#> cohort1915    1.2559     0.1479   8.4940   < 1e-4
#> 
#> Overdispersion parameter:
#>    phi 
#> 0.0033 
#> 
#> Pearson's chi-squared goodness-of-fit statistic = 31.9015 
#>