raoscott.RdTests the homogeneity of proportions between \(I\) groups (H0: \(p_1 = p_2 = ... = p_I\) ) from clustered binomial data \((n, y)\) using the adjusted \(\chi^2\) statistic proposed by Rao and Scott (1993).
raoscott(formula = NULL, response = NULL, weights = NULL,
group = NULL, data, pooled = FALSE, deff = NULL)An optional formula where the left-hand side is either a matrix of the form cbind(y, n-y),
where the modelled probability is y/n, or a vector of proportions to be modelled (y/n).
In both cases, the right-hand side must specify a single grouping variable. When the left-hand side of the formula
is a vector of proportions, the argument weight must be used to indicate the denominators of the
proportions.
An optional argument: either a matrix of the form cbind(y, n-y), where the modelled probability
is y/n, or a vector of proportions to be modelled (y/n).
An optional argument used when the left-hand side of formula or response is a vector
of proportions: weight is the denominator of the proportions.
An optional argument only used when response is used. In this case, this argument is a factor
indicating a grouping variable.
A data frame containing the response (n and y) and the grouping variable.
Logical indicating if a pooled design effect is estimated over the \(I\) groups.
A numerical vector of \(I\) design effects.
The method is based on the concepts of design effect and effective sample size.
The design effect in each group \(i\) is estimated by \(deff_i = vratio_i / vbin_i\), where \(vratio_i\) is
the variance of the ratio estimate of the probability in group \(i\) (Cochran, 1999, p. 32 and p. 66)
and \(vbin_i\) is the standard binomial variance. A pooled design effect (i.e., over the \(I\) groups)
is estimated if argument pooled = TRUE (see Rao and Scott, 1993, Eq. 6). Fixed design effects can be specified
with the argument deff.
The \(deff_i\) are used to compute the effective sample sizes \(nadj_i = n_i / deff_i\), the effective numbers
of successes \(yadj_i = y_i / deff_i\) in each group \(i\), and the overall effective proportion
\(padj = \sum_{i} yadj_i / \sum_{i} deff_i\).
The test statistic is obtained by substituting these quantities in the usual \(\chi^2\) statistic,
yielding:
$$X^2 = \sum_{i}\frac{(yadj_i - nadj_i * padj)^2}{nadj_i * padj * (1 - padj)}$$
which is compared to a \(\chi^2\) distribution with \(I - 1\) degrees of freedom.
An object of formal class “drs”: see drs-class for details. The slot tab
provides the proportion of successes, the variances of the proportion and the design effect for each group.
Cochran, W.G., 1999, 2nd ed. Sampling techniques. John Wiley & Sons, New York.
Rao, J.N.K., Scott, A.J., 1992. A simple method for the analysis of clustered binary data.
Biometrics 48, 577-585.
data(rats)
# deff by group
raoscott(cbind(y, n - y) ~ group, data = rats)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(formula = cbind(y, n - y) ~ group, data = rats)
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 1.232
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 3.953
#>
#> Adjusted chi-squared test:
#> X2 = 4, df = 1, P(> X2) = 0.0444
raoscott(y/n ~ group, weights = n, data = rats)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(formula = y/n ~ group, weights = n, data = rats)
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group + n N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 1.232
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 3.953
#>
#> Adjusted chi-squared test:
#> X2 = 4, df = 1, P(> X2) = 0.0444
raoscott(response = cbind(y, n - y), group = group, data = rats)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(response = cbind(y, n - y), group = group, data = rats)
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group + NULL N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 1.232
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 3.953
#>
#> Adjusted chi-squared test:
#> X2 = 4, df = 1, P(> X2) = 0.0444
raoscott(response = y/n, weights = n, group = group, data = rats)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(response = y/n, weights = n, group = group, data = rats)
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group + n N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 1.232
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 3.953
#>
#> Adjusted chi-squared test:
#> X2 = 4, df = 1, P(> X2) = 0.0444
# pooled deff
raoscott(cbind(y, n - y) ~ group, data = rats, pooled = TRUE)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(formula = cbind(y, n - y) ~ group, data = rats, pooled = TRUE)
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 3.069
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 3.069
#>
#> Adjusted chi-squared test:
#> X2 = 2.9, df = 1, P(> X2) = 0.0886
# standard test
raoscott(cbind(y, n - y) ~ group, data = rats, deff = c(1, 1))
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(formula = cbind(y, n - y) ~ group, data = rats, deff = c(1,
#> 1))
#> N = 32 clusters, n = 303 subjects, y = 254 cases, I = 2 groups.
#>
#> Data and design effects:
#> group N n y p vbin vratio deff
#> 1 CTRL 16 158 142 0.8987 0.000576 0.0007099 1
#> 2 TREAT 16 145 112 0.7724 0.001212 0.0047922 1
#>
#> Adjusted chi-squared test:
#> X2 = 8.9, df = 1, P(> X2) = 0.0029
data(antibio)
raoscott(cbind(y, n - y) ~ treatment, data = antibio)
#>
#> Test of proportion homogeneity (Rao and Scott, 1993)
#> ----------------------------------------------------
#> raoscott(formula = cbind(y, n - y) ~ treatment, data = antibio)
#> N = 24 clusters, n = 542 subjects, y = 67 cases, I = 4 groups.
#>
#> Data and design effects:
#> treatment N n y p vbin vratio deff
#> 1 1 7 144 18 0.12500 0.0007595 0.0028676 3.775
#> 2 2 6 129 8 0.06202 0.0004509 0.0007568 1.678
#> 3 3 5 130 24 0.18462 0.0011579 0.0014880 1.285
#> 4 4 6 139 17 0.12230 0.0007723 0.0020771 2.690
#>
#> Adjusted chi-squared test:
#> X2 = 5.9, df = 3, P(> X2) = 0.1174