summary.glimML-class.RdSummary of a model of formal class “glimML” fitted by betabin or negbin.
Objects can be created by calls of the form new("summary.glimML", ...) or,
more commonly, via the summary or show method for objects of formal class “glimML”.
objectAn object of formal class “glimML”.
CoefA data frame containing the estimates, standard error, z and P values for the fixed-effect coefficients which were estimated by the fitting function.
FixedCoefA data frame containing the values of the fixed-effect coefficients which were set to a fixed value.
PhiA data frame containing the estimates, standard error, z and P values for the overdispersion coefficients which were estimated by the fitting function. Because the overdispersion coefficients are \(> 0\), P values correspond to unilateral tests.
FixedPhiA data frame containing the values of the overdispersion coefficients which were set to a fixed value.
signature(object = "summary.glimML")
signature(object = "glimML")
signature(object = "glimML")
data(orob2)
fm1 <- betabin(cbind(y, n - y) ~ seed, ~ 1, data = orob2)
# show objects of class "glimML"
fm1
#> Beta-binomial model
#> -------------------
#> betabin(formula = cbind(y, n - y) ~ seed, random = ~1, data = orob2)
#>
#> Convergence was obtained after 80 iterations.
#>
#> Fixed-effect coefficients:
#> Estimate Std. Error z value Pr(> |z|)
#> (Intercept) -2.602e-01 2.262e-01 -1.15e+00 2.500e-01
#> seedO75 4.130e-01 2.993e-01 1.38e+00 1.676e-01
#>
#> Overdispersion coefficients:
#> Estimate Std. Error z value Pr(> z)
#> phi.(Intercept) 7.805e-02 3.015e-02 2.589e+00 4.82e-03
#>
#> Log-likelihood statistics
#> Log-lik nbpar df res. Deviance AIC AICc
#> -6.355e+01 3 18 5.051e+01 1.331e+02 1.345e+02
# summary for objects of class "glimML"
res <- summary(fm1)
res@Coef
#> Estimate Std. Error z value Pr(> |z|)
#> (Intercept) -0.2601803 0.2261948 -1.150248 0.2500415
#> seedO75 0.4130146 0.2993271 1.379810 0.1676452
# show objects of class "summary.glimML"
res
#> Beta-binomial model
#> -------------------
#> betabin(formula = cbind(y, n - y) ~ seed, random = ~1, data = orob2)
#>
#> Convergence was obtained after 80 iterations.
#>
#> Fixed-effect coefficients:
#> Estimate Std. Error z value Pr(> |z|)
#> (Intercept) -2.602e-01 2.262e-01 -1.15e+00 2.500e-01
#> seedO75 4.130e-01 2.993e-01 1.38e+00 1.676e-01
#>
#> Overdispersion coefficients:
#> Estimate Std. Error z value Pr(> z)
#> phi.(Intercept) 7.805e-02 3.015e-02 2.589e+00 4.82e-03
#>
#> Log-likelihood statistics
#> Log-lik nbpar df res. Deviance AIC AICc
#> -6.355e+01 3 18 5.051e+01 1.331e+02 1.345e+02