Compute a Bayesian equivalent of the p-value, related to the odds that a parameter (described by its posterior distribution) has against the null hypothesis (h0) using Mills' (2014, 2017) Objective Bayesian Hypothesis Testing framework. It corresponds to the density value at the null (e.g., 0) divided by the density at the Maximum A Posteriori (MAP).
p_map(x, ...)
p_pointnull(x, ...)
# S3 method for class 'numeric'
p_map(x, null = 0, precision = 2^10, method = "kernel", ...)
# S3 method for class 'get_predicted'
p_map(
x,
null = 0,
precision = 2^10,
method = "kernel",
use_iterations = FALSE,
verbose = TRUE,
...
)
# S3 method for class 'data.frame'
p_map(x, null = 0, precision = 2^10, method = "kernel", rvar_col = NULL, ...)
# S3 method for class 'brmsfit'
p_map(
x,
null = 0,
precision = 2^10,
method = "kernel",
effects = "fixed",
component = "conditional",
parameters = NULL,
...
)Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model. bayestestR supports a wide range
of models (see, for example, methods("hdi")) and not all of those are
documented in the 'Usage' section, because methods for other classes mostly
resemble the arguments of the .numeric or .data.framemethods.
Currently not used.
The value considered as a "null" effect. Traditionally 0, but could also be 1 in the case of ratios of change (OR, IRR, ...).
Number of points of density data. See the n parameter in density.
Density estimation method. Can be "kernel" (default), "logspline"
or "KernSmooth".
Logical, if TRUE and x is a get_predicted object,
(returned by insight::get_predicted()), the function is applied to the
iterations instead of the predictions. This only applies to models that return
iterations for predicted values (e.g., brmsfit models).
Toggle off warnings.
A single character - the name of an rvar column in the data
frame to be processed. See example in p_direction().
Should variables for fixed effects ("fixed"), random effects
("random") or both ("all") be returned? Only applies to mixed models. May
be abbreviated.
For models of from packages brms or rstanarm there are additional options:
"fixed" returns fixed effects.
"random_variance" return random effects parameters (variance and
correlation components, e.g. those parameters that start with sd_ or
cor_).
"grouplevel" returns random effects group level estimates, i.e. those
parameters that start with r_.
"random" returns both "random_variance" and "grouplevel".
"all" returns fixed effects and random effects variances.
"full" returns all parameters.
Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, etc. See details in section Model Components. May be abbreviated. Note that the conditional component also refers to the count or mean component - names may differ, depending on the modeling package. There are three convenient shortcuts (not applicable to all model classes):
component = "all" returns all possible parameters.
If component = "location", location parameters such as conditional,
zero_inflated, smooth_terms, or instruments are returned (everything
that are fixed or random effects - depending on the effects argument -
but no auxiliary parameters).
For component = "distributional" (or "auxiliary"), components like
sigma, dispersion, beta or precision (and other auxiliary
parameters) are returned.
Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like lp__ or prior_) are
filtered by default, so only parameters that typically appear in the
summary() are returned. Use parameters to select specific parameters
for the output.
Note that this method is sensitive to the density estimation method
(see the section in the examples below).
Strengths: Straightforward computation. Objective property of the posterior distribution.
Limitations: Limited information favoring the null hypothesis. Relates on density approximation. Indirect relationship between mathematical definition and interpretation. Only suitable for weak / very diffused priors.
Possible values for the component argument depend on the model class.
Following are valid options:
"all": returns all model components, applies to all models, but will only
have an effect for models with more than just the conditional model
component.
"conditional": only returns the conditional component, i.e. "fixed
effects" terms from the model. Will only have an effect for models with
more than just the conditional model component.
"smooth_terms": returns smooth terms, only applies to GAMs (or similar
models that may contain smooth terms).
"zero_inflated" (or "zi"): returns the zero-inflation component.
"location": returns location parameters such as conditional,
zero_inflated, or smooth_terms (everything that are fixed or random
effects - depending on the effects argument - but no auxiliary
parameters).
"distributional" (or "auxiliary"): components like sigma,
dispersion, beta or precision (and other auxiliary parameters) are
returned.
For models of class brmsfit (package brms), even more options are
possible for the component argument, which are not all documented in detail
here. See also ?insight::find_parameters.
Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi:10.3389/fpsyg.2019.02767
Mills, J. A. (2018). Objective Bayesian Precise Hypothesis Testing. University of Cincinnati.
library(bayestestR)
p_map(rnorm(1000, 0, 1))
#> MAP-based p-value
#>
#> Parameter | p (MAP)
#> -------------------
#> Posterior | 0.992
p_map(rnorm(1000, 10, 1))
#> MAP-based p-value
#>
#> Parameter | p (MAP)
#> -------------------
#> Posterior | < .001
# \donttest{
model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
p_map(model)
#> MAP-based p-value
#>
#> Parameter | p (MAP)
#> ---------------------
#> (Intercept) | < .001
#> wt | < .001
#> gear | 0.621
p_map(suppressWarnings(
emmeans::emtrends(model, ~1, "wt", data = mtcars)
))
#> MAP-based p-value
#>
#> X1 | p (MAP)
#> -----------------
#> overall | < .001
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
#> Compiling Stan program...
#> Start sampling
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 1.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.03 seconds (Warm-up)
#> Chain 1: 0.026 seconds (Sampling)
#> Chain 1: 0.056 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 7e-06 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.029 seconds (Warm-up)
#> Chain 2: 0.022 seconds (Sampling)
#> Chain 2: 0.051 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 6e-06 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.03 seconds (Warm-up)
#> Chain 3: 0.025 seconds (Sampling)
#> Chain 3: 0.055 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 5e-06 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.032 seconds (Warm-up)
#> Chain 4: 0.028 seconds (Sampling)
#> Chain 4: 0.06 seconds (Total)
#> Chain 4:
p_map(model)
#> MAP-based p-value
#>
#> Parameter | p (MAP)
#> ---------------------
#> (Intercept) | < .001
#> wt | 0.002
#> cyl | 0.004
bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
p_map(bf)
#> MAP-based p-value
#>
#> Parameter | p (MAP)
#> --------------------
#> Difference | < .001
# ---------------------------------------
# Robustness to density estimation method
set.seed(333)
data <- data.frame()
for (iteration in 1:250) {
x <- rnorm(1000, 1, 1)
result <- data.frame(
Kernel = as.numeric(p_map(x, method = "kernel")),
KernSmooth = as.numeric(p_map(x, method = "KernSmooth")),
logspline = as.numeric(p_map(x, method = "logspline"))
)
data <- rbind(data, result)
}
data$KernSmooth <- data$Kernel - data$KernSmooth
data$logspline <- data$Kernel - data$logspline
summary(data$KernSmooth)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.039724 -0.007909 -0.003885 -0.005338 -0.001128 0.056325
summary(data$logspline)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.092243 -0.009008 0.022214 0.026966 0.066303 0.166870
boxplot(data[c("KernSmooth", "logspline")])
# }