predict.bigglm.RdComputes fitted means and standard errors at new data values after
fitting a model with biglm or bigglm.
When make.function is TRUE, the return value is either a
single function that computes the fitted values or a list of two
functions that compute the fitted values and standard errors. The
input to these functions is the design matrix, without the intercept
column. This allows the relatively time-consuming calls to
model.frame() and model.matrix() to be avoided.
Either a vector of predicted values or a data frame with predicted values and standard errors.
~put references to the literature/web site here ~
example(biglm)
#>
#> biglm> data(trees)
#>
#> biglm> ff<-log(Volume)~log(Girth)+log(Height)
#>
#> biglm> chunk1<-trees[1:10,]
#>
#> biglm> chunk2<-trees[11:20,]
#>
#> biglm> chunk3<-trees[21:31,]
#>
#> biglm> a <- biglm(ff,chunk1)
#>
#> biglm> a <- update(a,chunk2)
#>
#> biglm> a <- update(a,chunk3)
#>
#> biglm> summary(a)
#> Large data regression model: a <- biglm(ff,chunk1)
#> Sample size = 31
#> Coef (95% CI) SE p
#> (Intercept) -6.6316 -8.2312 -5.0320 0.7998 0
#> log(Girth) 1.9826 1.8326 2.1327 0.0750 0
#> log(Height) 1.1171 0.7082 1.5260 0.2044 0
#>
#> biglm> deviance(a)
#> [1] 0.1854634
#>
#> biglm> AIC(a)
#> [1] 48.18546
predict(a,newdata=trees)
#> [,1]
#> 1 2.310270
#> 2 2.297879
#> 3 2.308547
#> 4 2.807900
#> 5 2.976888
#> 6 3.022580
#> 7 2.802931
#> 8 2.945736
#> 9 3.035777
#> 10 2.981461
#> 11 3.057130
#> 12 3.031349
#> 13 3.031349
#> 14 2.974906
#> 15 3.118250
#> 16 3.246641
#> 17 3.401459
#> 18 3.475068
#> 19 3.319702
#> 20 3.218167
#> 21 3.467691
#> 22 3.524097
#> 23 3.478455
#> 24 3.643019
#> 25 3.754853
#> 26 3.929478
#> 27 3.965974
#> 28 3.983197
#> 29 3.994242
#> 30 3.994242
#> 31 4.355446
f<-predict(a,make.function=TRUE)
X<- with(trees, cbind(log(Girth),log(Height)))
f(X)
#> [,1]
#> [1,] 2.310270
#> [2,] 2.297879
#> [3,] 2.308547
#> [4,] 2.807900
#> [5,] 2.976888
#> [6,] 3.022580
#> [7,] 2.802931
#> [8,] 2.945736
#> [9,] 3.035777
#> [10,] 2.981461
#> [11,] 3.057130
#> [12,] 3.031349
#> [13,] 3.031349
#> [14,] 2.974906
#> [15,] 3.118250
#> [16,] 3.246641
#> [17,] 3.401459
#> [18,] 3.475068
#> [19,] 3.319702
#> [20,] 3.218167
#> [21,] 3.467691
#> [22,] 3.524097
#> [23,] 3.478455
#> [24,] 3.643019
#> [25,] 3.754853
#> [26,] 3.929478
#> [27,] 3.965974
#> [28,] 3.983197
#> [29,] 3.994242
#> [30,] 3.994242
#> [31,] 4.355446