Glance accepts a model object and returns a tibble::tibble()
with exactly one row of model summaries. The summaries are typically
goodness of fit measures, p-values for hypothesis tests on residuals,
or model convergence information.
Glance never returns information from the original call to the modeling function. This includes the name of the modeling function or any arguments passed to the modeling function.
Glance does not calculate summary measures. Rather, it farms out these
computations to appropriate methods and gathers the results together.
Sometimes a goodness of fit measure will be undefined. In these cases
the measure will be reported as NA
.
Glance returns the same number of columns regardless of whether the
model matrix is rank-deficient or not. If so, entries in columns
that no longer have a well-defined value are filled in with an NA
of the appropriate type.
# S3 method for class 'plm'
glance(x, ...)
A plm
objected returned by plm::plm()
.
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in ...
, where they will be ignored. If the misspelled
argument has a default value, the default value will be used.
For example, if you pass conf.lvel = 0.9
, all computation will
proceed using conf.level = 0.95
. Two exceptions here are:
Other plm tidiers:
augment.plm()
,
tidy.plm()
A tibble::tibble()
with exactly one row and columns:
Adjusted R squared statistic, which is like the R squared statistic except taking degrees of freedom into account.
Deviance of the model.
Residual degrees of freedom.
Number of observations used.
P-value corresponding to the test statistic.
R squared statistic, or the percent of variation explained by the model. Also known as the coefficient of determination.
F-statistic
# load libraries for models and data
library(plm)
# load data
data("Produc", package = "plm")
# fit model
zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc, index = c("state", "year")
)
# summarize model fit with tidiers
summary(zz)
#> Oneway (individual) effect Within Model
#>
#> Call:
#> plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#> data = Produc, index = c("state", "year"))
#>
#> Balanced Panel: n = 48, T = 17, N = 816
#>
#> Residuals:
#> Min. 1st Qu. Median 3rd Qu. Max.
#> -0.120456 -0.023741 -0.002041 0.018144 0.174718
#>
#> Coefficients:
#> Estimate Std. Error t-value Pr(>|t|)
#> log(pcap) -0.02614965 0.02900158 -0.9017 0.3675
#> log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 ***
#> log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 ***
#> unemp -0.00529774 0.00098873 -5.3582 1.114e-07 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Total Sum of Squares: 18.941
#> Residual Sum of Squares: 1.1112
#> R-Squared: 0.94134
#> Adj. R-Squared: 0.93742
#> F-statistic: 3064.81 on 4 and 764 DF, p-value: < 2.22e-16
tidy(zz)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7
tidy(zz, conf.int = TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0830 0.0307
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.243 0.341
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.709 0.827
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00724 -0.00336
tidy(zz, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0739 0.0216
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.251 0.333
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.719 0.818
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00692 -0.00367
augment(zz)
#> # A tibble: 816 × 7
#> `log(gsp)` `log(pcap)` `log(pc)` `log(emp)` unemp .fitted .resid
#> <pseries> <pseries> <pseries> <pseries> <pseries> <dbl> <pseries>
#> 1 10.25478 9.617981 10.48553 6.918201 4.7 10.3 -0.046561413
#> 2 10.28790 9.648720 10.52675 6.929419 5.2 10.3 -0.030640422
#> 3 10.35147 9.678618 10.56283 6.977561 4.7 10.4 -0.016454312
#> 4 10.41721 9.705418 10.59873 7.034828 3.9 10.4 -0.008726974
#> 5 10.42671 9.726910 10.64679 7.064588 5.5 10.5 -0.027084312
#> 6 10.42240 9.759401 10.69130 7.052202 7.7 10.4 -0.022368930
#> 7 10.48470 9.783175 10.82420 7.095893 6.8 10.5 -0.036587629
#> 8 10.53111 9.804326 10.84125 7.146142 7.4 10.6 -0.030020604
#> 9 10.59573 9.824430 10.87055 7.197810 6.3 10.6 -0.018942497
#> 10 10.62082 9.845937 10.90643 7.216709 7.1 10.6 -0.014057170
#> # ℹ 806 more rows
glance(zz)
#> # A tibble: 1 × 7
#> r.squared adj.r.squared statistic p.value deviance df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.941 0.937 3065. 0 1.11 764 816