Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for class 'mlm'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
An mlm
object created by stats::lm()
with a matrix as the
response.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE
.
The confidence level to use for the confidence interval
if conf.int = TRUE
. Must be strictly greater than 0 and less than 1.
Defaults to 0.95, which corresponds to a 95 percent confidence interval.
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in ...
, where they will be ignored. If the misspelled
argument has a default value, the default value will be used.
For example, if you pass conf.lvel = 0.9
, all computation will
proceed using conf.level = 0.95
. Two exceptions here are:
In contrast to lm
object (simple linear model), tidy output for
mlm
(multiple linear model) objects contain an additional column
response
.
If you have missing values in your model data, you may need to refit
the model with na.action = na.exclude
.
Other lm tidiers:
augment.glm()
,
augment.lm()
,
glance.glm()
,
glance.lm()
,
glance.summary.lm()
,
glance.svyglm()
,
tidy.glm()
,
tidy.lm()
,
tidy.lm.beta()
,
tidy.summary.lm()
A tibble::tibble()
with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the regression term.
# fit model
mod <- lm(cbind(mpg, disp) ~ wt, mtcars)
# summarize model fit with tidiers
tidy(mod, conf.int = TRUE)
#> # A tibble: 4 × 8
#> response term estimate std.error statistic p.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg (Intercept) 37.3 1.88 19.9 8.24e-19 33.5 41.1
#> 2 mpg wt -5.34 0.559 -9.56 1.29e-10 -6.49 -4.20
#> 3 disp (Intercept) -131. 35.7 -3.67 9.33e- 4 -204. -58.2
#> 4 disp wt 112. 10.6 10.6 1.22e-11 90.8 134.