These methods tidy the coefficients of mnl and nl models generated
by the functions of the mlogit
package.
# S3 method for class 'mlogit'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
an object returned from mlogit::mlogit()
.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE
.
The confidence level to use for the confidence interval
if conf.int = TRUE
. Must be strictly greater than 0 and less than 1.
Defaults to 0.95, which corresponds to a 95 percent confidence interval.
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in ...
, where they will be ignored. If the misspelled
argument has a default value, the default value will be used.
For example, if you pass conf.lvel = 0.9
, all computation will
proceed using conf.level = 0.95
. Two exceptions here are:
Other mlogit tidiers:
augment.mlogit()
,
glance.mlogit()
A tibble::tibble()
with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the regression term.
# load libraries for models and data
library(mlogit)
data("Fishing", package = "mlogit")
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode")
# fit model
m <- mlogit(mode ~ price + catch | income, data = Fish)
# summarize model fit with tidiers
tidy(m)
#> # A tibble: 8 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept):boat 0.527 0.223 2.37 1.79e- 2
#> 2 (Intercept):charter 1.69 0.224 7.56 3.95e-14
#> 3 (Intercept):pier 0.778 0.220 3.53 4.18e- 4
#> 4 price -0.0251 0.00173 -14.5 0
#> 5 catch 0.358 0.110 3.26 1.12e- 3
#> 6 income:boat 0.0000894 0.0000501 1.79 7.40e- 2
#> 7 income:charter -0.0000333 0.0000503 -0.661 5.08e- 1
#> 8 income:pier -0.000128 0.0000506 -2.52 1.18e- 2
augment(m)
#> # A tibble: 4,728 × 9
#> id alternative chosen price catch income .probability .fitted .resid
#> <int> <fct> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 beach FALSE 158. 0.0678 7083. 0.125 -3.94 -0.339
#> 2 1 boat FALSE 158. 0.260 7083. 0.427 -2.71 -0.423
#> 3 1 charter TRUE 183. 0.539 7083. 0.339 -2.94 -0.465
#> 4 1 pier FALSE 158. 0.0503 7083. 0.109 -4.07 -0.374
#> 5 2 beach FALSE 15.1 0.105 1250. 0.116 -0.342 -0.475
#> 6 2 boat FALSE 10.5 0.157 1250. 0.251 0.431 -0.448
#> 7 2 charter TRUE 34.5 0.467 1250. 0.423 0.952 0.473
#> 8 2 pier FALSE 15.1 0.0451 1250. 0.210 0.255 -0.287
#> 9 3 beach FALSE 162. 0.533 3750. 0.00689 -3.87 -0.301
#> 10 3 boat TRUE 24.3 0.241 3750. 0.465 0.338 -0.276
#> # ℹ 4,718 more rows
glance(m)
#> # A tibble: 1 × 6
#> logLik rho2 rho20 AIC BIC nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 -1215. 0.189 0.258 2446. NA 1182