These selection helpers match variables according to a given pattern.
all_ard_groups(): Function selects grouping columns, e.g. columns
named "group##" or "group##_level".
all_ard_variables(): Function selects variables columns, e.g. columns
named "variable" or "variable_level".
all_ard_group_n(): Function selects n grouping columns.
all_missing_columns(): Function selects columns that are all NA or empty.
tidyselect output
ard <- ard_tabulate(ADSL, by = "ARM", variables = "AGEGR1")
ard |> dplyr::select(all_ard_groups())
#> {cards} data frame: 27 x 2
#> group1 group1_level
#> 1 ARM Placebo
#> 2 ARM Placebo
#> 3 ARM Placebo
#> 4 ARM Placebo
#> 5 ARM Placebo
#> 6 ARM Placebo
#> 7 ARM Placebo
#> 8 ARM Placebo
#> 9 ARM Placebo
#> 10 ARM Xanomeli…
#> ℹ 17 more rows
#> ℹ Use `print(n = ...)` to see more rows
ard |> dplyr::select(all_ard_variables())
#> {cards} data frame: 27 x 2
#> variable variable_level
#> 1 AGEGR1 65-80
#> 2 AGEGR1 65-80
#> 3 AGEGR1 65-80
#> 4 AGEGR1 <65
#> 5 AGEGR1 <65
#> 6 AGEGR1 <65
#> 7 AGEGR1 >80
#> 8 AGEGR1 >80
#> 9 AGEGR1 >80
#> 10 AGEGR1 65-80
#> ℹ 17 more rows
#> ℹ Use `print(n = ...)` to see more rows