These functions help construct calls to various types of models.
construct_model(data, ...)
# S3 method for class 'data.frame'
construct_model(
data,
formula,
method,
method.args = list(),
package = "base",
env = caller_env(),
...
)
# S3 method for class 'survey.design'
construct_model(
data,
formula,
method,
method.args = list(),
package = "survey",
env = caller_env(),
...
)
reformulate2(
termlabels,
response = NULL,
intercept = TRUE,
env = parent.frame(),
pattern_term = NULL,
pattern_response = NULL
)
bt(x, pattern = NULL)
bt_strip(x)
construct_model.data.frame()
(data.frame
) a data frame
construct_model.survey.design()
(survey.design
) a survey design object
These dots are for future extensions and must be empty.
(formula
)
a formula
(string
)
string of function naming the function to be called, e.g. "glm"
.
If function belongs to a library that is not attached, the package name
must be specified in the package
argument.
(named list
)
named list of arguments that will be passed to method
.
Note that this list may contain non-standard evaluation components.
If you are wrapping this function in other functions, the argument
must be passed in a way that does not evaluate the list, e.g.
using rlang's embrace operator {{ . }}
.
(string
)
a package name that will be temporarily loaded when function
specified in method
is executed.
The environment in which to evaluate expr
. This
environment is not applicable for quosures because they have
their own environments.
character vector giving the right-hand side of a model formula. Cannot be zero-length.
character string, symbol or call giving the left-hand
side of a model formula, or NULL
.
logical: should the formula have an intercept?
(character
)
character vector, typically of variable names
DEPRECATED
depends on the calling function
construct_model()
: Builds models of the form method(data = data, formula = formula, method.args!!!)
.
If the package
argument is specified, that package is temporarily attached
when the model is evaluated.
reformulate2()
: This is a copy of reformulate()
except that variable
names that contain a space are wrapped in backticks.
bt()
: Adds backticks to a character vector.
bt_strip()
: Removes backticks from a string if it begins and ends with a backtick.
construct_model(
data = mtcars,
formula = am ~ mpg + (1 | vs),
method = "glmer",
method.args = list(family = binomial),
package = "lme4"
) |>
broom.mixed::tidy()
#> # A tibble: 3 × 7
#> effect group term estimate std.error statistic p.value
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 fixed NA (Intercept) -8.70 4.12 -2.11 0.0347
#> 2 fixed NA mpg 0.409 0.199 2.05 0.0403
#> 3 ran_pars vs sd__(Intercept) 0.790 NA NA NA
construct_model(
data = mtcars |> dplyr::rename(`M P G` = mpg),
formula = reformulate2(c("M P G", "cyl"), response = "hp"),
method = "lm"
) |>
ard_regression() |>
dplyr::filter(stat_name %in% c("term", "estimate", "p.value"))
#> {cards} data frame: 6 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 M P G regressi… term term `M P G` NULL
#> 2 M P G regressi… estimate Coeffici… -2.775 1
#> 3 M P G regressi… p.value p-value 0.213 1
#> 4 cyl regressi… term term cyl NULL
#> 5 cyl regressi… estimate Coeffici… 23.979 1
#> 6 cyl regressi… p.value p-value 0.003 1
#> ℹ 2 more variables: warning, error