This function calculates least-squares mean differences using the 'emmeans' package using the following
emmeans::emmeans(object = <regression model>, specs = ~ <primary covariate>) |>
emmeans::contrast(method = "pairwise") |>
summary(infer = TRUE, level = <confidence level>)
The arguments data, formula, method, method.args, package are used
to construct the regression model via cardx::construct_model().
ard_emmeans_mean_difference(
data,
formula,
method,
method.args = list(),
package = "base",
response_type = c("continuous", "dichotomous"),
conf.level = 0.95,
primary_covariate = getElement(attr(stats::terms(formula), "term.labels"), 1L)
)(data.frame/survey.design)
a data frame or survey design object
(formula)
a formula
(string)
string of function naming the function to be called, e.g. "glm".
If function belongs to a library that is not attached, the package name
must be specified in the package argument.
(named list)
named list of arguments that will be passed to method.
Note that this list may contain non-standard evaluation components.
If you are wrapping this function in other functions, the argument
must be passed in a way that does not evaluate the list, e.g.
using rlang's embrace operator {{ . }}.
(string)
a package name that will be temporarily loaded when function
specified in method is executed.
(string)
string indicating whether the model outcome is 'continuous'
or 'dichotomous'. When 'dichotomous', the call to emmeans::emmeans() is
supplemented with argument regrid="response".
(scalar numeric)
confidence level for confidence interval. Default is 0.95.
(string)
string indicating the primary covariate (typically the dichotomous treatment variable).
Default is the first covariate listed in the formula.
ARD data frame
ard_emmeans_mean_difference(
data = mtcars,
formula = mpg ~ am + cyl,
method = "lm"
)
#> {cards} data frame: 8 x 10
#> group1 variable variable_level stat_name stat_label stat
#> 1 am contrast am0 - am1 estimate Mean Dif… -2.567
#> 2 am contrast am0 - am1 std.error std.error 1.291
#> 3 am contrast am0 - am1 df df 29
#> 4 am contrast am0 - am1 conf.low CI Lower… -5.208
#> 5 am contrast am0 - am1 conf.high CI Upper… 0.074
#> 6 am contrast am0 - am1 p.value p-value 0.056
#> 7 am contrast am0 - am1 conf.level CI Confi… 0.95
#> 8 am contrast am0 - am1 method method Least-sq…
#> ℹ 4 more variables: context, fmt_fun, warning, error
ard_emmeans_mean_difference(
data = mtcars,
formula = vs ~ am + mpg,
method = "glm",
method.args = list(family = binomial),
response_type = "dichotomous"
)
#> {cards} data frame: 8 x 10
#> group1 variable variable_level stat_name stat_label stat
#> 1 am contrast am0 - am1 estimate Mean Dif… 0.61
#> 2 am contrast am0 - am1 std.error std.error 0.229
#> 3 am contrast am0 - am1 df df Inf
#> 4 am contrast am0 - am1 conf.low CI Lower… 0.162
#> 5 am contrast am0 - am1 conf.high CI Upper… 1.059
#> 6 am contrast am0 - am1 p.value p-value 0.008
#> 7 am contrast am0 - am1 conf.level CI Confi… 0.95
#> 8 am contrast am0 - am1 method method Least-sq…
#> ℹ 4 more variables: context, fmt_fun, warning, error