predict_with_quantiles_plot.RdPlots predictions and 90% CI
A data frame containing C-QT analysis dataset
An nlme::lme model object from model fitting
An unquoted column name for concentration measurements
An unquoted column name for dependent variable measurements
An unquoted column name for subject ID
An unquoted column name for nominal time since dose
An unquoted column name for treatment group
List of a values for contrast. CONC will update
List of b values for contrast
Optional vector of numbers to add as horizontal dashed lines
Numeric confidence interval level (default: 0.9)
Number of bins for quantiles, or vector of cut points for computing average
A string to denote which errorbars to show, CI, SE, SD or none.
A string specifying contrast method when using control_predictors: "matched" for individual ID+time matching (crossover studies), "group" for group-wise subtraction (parallel studies)
A named list of arguments passed to style_plot()
a plot
data_proc <- preprocess(cqtkit_data_verapamil)
fit <- fit_prespecified_model(
data_proc,
deltaQTCF,
ID,
CONC,
deltaQTCFBL,
TRTG,
TAFD,
"REML",
TRUE
)
predict_with_quantiles_plot(
data_proc,
fit,
CONC,
deltaQTCF,
treatment_predictors = list(
CONC = 0,
TRTG = "Verapamil HCL",
TAFD = "2 HR",
deltaQTCFBL = 0
)
)
#> Warning: Your xdata quantiles had duplicates. Filtering for x values > 0