ode.band.Rd
Solves a system of ordinary differential equations.
Assumes a banded Jacobian matrix, but does not rearrange the state variables (in contrast to ode.1D). Suitable for 1-D models that include transport only between adjacent layers and that model only one species.
ode.band(y, times, func, parms, nspec = NULL, dimens = NULL,
bandup = nspec, banddown = nspec, method = "lsode", names = NULL,
...)
the initial (state) values for the ODE system, a vector. If
y
has a name attribute, the names will be used to label the
output matrix.
time sequence for which output is wanted; the first
value of times
must be the initial time.
either an R-function that computes the values of the
derivatives in the ODE system (the model definition) at time
t
, or a character string giving the name of a compiled
function in a dynamically loaded shared library.
If func
is an R-function, it must be defined as:
func <- function(t, y, parms, ...)
. t
is the current time
point in the integration, y
is the current estimate of the
variables in the ODE system. If the initial values y
has a
names
attribute, the names will be available inside func
.
parms
is a vector or list of parameters; ...
(optional) are
any other arguments passed to the function.
The return value of func
should be a list, whose first
element is a vector containing the derivatives of y
with
respect to time
, and whose next elements are global values
that are required at each point in times
.The derivatives
must be specified in the same order as the state variables y
.
parameters passed to func
.
the number of *species* (components) in the model.
the number of boxes in the model. If NULL
, then
nspec
should be specified.
the number of nonzero bands above the Jacobian diagonal.
the number of nonzero bands below the Jacobian diagonal.
the integrator to use, one of "vode"
,
"lsode"
, "lsoda"
, "lsodar"
, "radau"
.
the names of the components; used for plotting.
additional arguments passed to the integrator.
A matrix of class deSolve
with up to as many rows as elements in times
and as
many columns as elements in y
plus the number of "global"
values returned in the second element of the return from func
,
plus an additional column (the first) for the time value. There will
be one row for each element in times
unless the integrator
returns with an unrecoverable error. If y
has a names
attribute, it will be used to label the columns of the output value.
The output will have the attributes istate
and rstate
,
two vectors with several elements. See the help for the selected
integrator for details. the first element of istate returns the
conditions under which the last call to the integrator returned. Normal is
istate = 2
. If verbose = TRUE
, the settings of
istate
and rstate
will be written to the screen.
This is the method of choice for single-species 1-D reactive transport models.
For multi-species 1-D models, this method can only be used if the
state variables are arranged per box, per species (e.g. A[1], B[1],
A[2], B[2], A[3], B[3], ... for species A, B). By default, the
model function will have the species arranged as A[1], A[2],
A[3], ... B[1], B[2], B[3], ... in this case, use ode.1D
.
See the selected integrator for the additional options.
## =======================================================================
## The Aphid model from Soetaert and Herman, 2009.
## A practical guide to ecological modelling.
## Using R as a simulation platform. Springer.
## =======================================================================
## 1-D diffusion model
## ================
## Model equations
## ================
Aphid <- function(t, APHIDS, parameters) {
deltax <- c (0.5*delx, rep(delx, numboxes-1), 0.5*delx)
Flux <- -D*diff(c(0, APHIDS, 0))/deltax
dAPHIDS <- -diff(Flux)/delx + APHIDS*r
list(dAPHIDS) # the output
}
## ==================
## Model application
## ==================
## the model parameters:
D <- 0.3 # m2/day diffusion rate
r <- 0.01 # /day net growth rate
delx <- 1 # m thickness of boxes
numboxes <- 60
## distance of boxes on plant, m, 1 m intervals
Distance <- seq(from = 0.5, by = delx, length.out = numboxes)
## Initial conditions, ind/m2
## aphids present only on two central boxes
APHIDS <- rep(0, times = numboxes)
APHIDS[30:31] <- 1
state <- c(APHIDS = APHIDS) # initialise state variables
## RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals
out <- ode.band(state, times, Aphid, parms = 0,
nspec = 1, names = "Aphid")
## ================
## Plotting output
## ================
image(out, grid = Distance, method = "filled.contour",
xlab = "time, days", ylab = "Distance on plant, m",
main = "Aphid density on a row of plants")
matplot.1D(out, grid = Distance, type = "l",
subset = time %in% seq(0, 200, by = 10))
# add an observed dataset to 1-D plot (make sure to use correct name):
data <- cbind(dist = c(0,10, 20, 30, 40, 50, 60),
Aphid = c(0,0.1,0.25,0.5,0.25,0.1,0))
matplot.1D(out, grid = Distance, type = "l",
subset = time %in% seq(0, 200, by = 10),
obs = data, obspar = list(pch = 18, cex = 2, col="red"))
if (FALSE) { # \dontrun{
plot.1D(out, grid = Distance, type = "l")
} # }