Perform set operations using the rows of a data frame.
intersect(x, y)
finds all rows in both x
and y
.
union(x, y)
finds all rows in either x
or y
, excluding duplicates.
union_all(x, y)
finds all rows in either x
or y
, including duplicates.
setdiff(x, y)
finds all rows in x
that aren't in y
.
symdiff(x, y)
computes the symmetric difference, i.e. all rows in
x
that aren't in y
and all rows in y
that aren't in x
.
setequal(x, y)
returns TRUE
if x
and y
contain the same rows
(ignoring order).
Note that intersect()
, union()
, setdiff()
, and symdiff()
remove
duplicates in x
and y
.
intersect(x, y, ...)
union(x, y, ...)
union_all(x, y, ...)
setdiff(x, y, ...)
setequal(x, y, ...)
symdiff(x, y, ...)
intersect()
, union()
, setdiff()
, and setequal()
override the base
functions of the same name in order to make them generic. The existing
behaviour for vectors is preserved by providing default methods that call
the base functions.
df1 <- tibble(x = 1:3)
df2 <- tibble(x = 3:5)
intersect(df1, df2)
#> # A tibble: 1 × 1
#> x
#> <int>
#> 1 3
union(df1, df2)
#> # A tibble: 5 × 1
#> x
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
union_all(df1, df2)
#> # A tibble: 6 × 1
#> x
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 3
#> 5 4
#> 6 5
setdiff(df1, df2)
#> # A tibble: 2 × 1
#> x
#> <int>
#> 1 1
#> 2 2
setdiff(df2, df1)
#> # A tibble: 2 × 1
#> x
#> <int>
#> 1 4
#> 2 5
symdiff(df1, df2)
#> # A tibble: 4 × 1
#> x
#> <int>
#> 1 1
#> 2 2
#> 3 4
#> 4 5
setequal(df1, df2)
#> [1] FALSE
setequal(df1, df1[3:1, ])
#> [1] TRUE
# Note that the following functions remove pre-existing duplicates:
df1 <- tibble(x = c(1:3, 3, 3))
df2 <- tibble(x = c(3:5, 5))
intersect(df1, df2)
#> # A tibble: 1 × 1
#> x
#> <dbl>
#> 1 3
union(df1, df2)
#> # A tibble: 5 × 1
#> x
#> <dbl>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
setdiff(df1, df2)
#> # A tibble: 2 × 1
#> x
#> <dbl>
#> 1 1
#> 2 2
symdiff(df1, df2)
#> # A tibble: 4 × 1
#> x
#> <dbl>
#> 1 1
#> 2 2
#> 3 4
#> 4 5