dr.permutation.test.Rd
Approximates marginal dimension test significance levels for sir, save, and phd by sampling from the permutation distribution.
dr.permutation.test(object, npermute=50,numdir=object$numdir)
The method approximates significance levels of the marginal dimension tests based on a permutation test. The algorithm: (1) permutes the rows of the predictor but not the response; (2) computes marginal dimension tests for the permuted data; (3) obtains significane levels by comparing the observed statsitics to the permutation distribution.
The method is not implemented for ire.
Returns an object of type ‘dr.permutation.test’ that can be printed or summarized to give the summary of the test.
See www.stat.umn.edu/arc/addons.html, and then select the article on dimension reduction regression or inverse regression.
data(ais)
attach(ais) # the Australian athletes data
#fit dimension reduction regression using sir
m1 <- dr(LBM~Wt+Ht+RCC+WCC, method="sir", nslices = 8)
summary(m1)
#>
#> Call:
#> dr(formula = LBM ~ Wt + Ht + RCC + WCC, method = "sir", nslices = 8)
#>
#> Method:
#> sir with 8 slices, n = 202.
#>
#> Slice Sizes:
#> 25 25 25 25 27 27 30 18
#>
#> Estimated Basis Vectors for Central Subspace:
#> Dir1 Dir2 Dir3 Dir4
#> Wt -0.11412 -0.016473 -0.3759 0.01182
#> Ht -0.05112 -0.003916 0.6108 -0.04842
#> RCC -0.99086 0.999513 -0.4675 0.12609
#> WCC 0.05060 -0.026227 0.5167 0.99077
#>
#> Dir1 Dir2 Dir3 Dir4
#> Eigenvalues 0.8769 0.1592 0.04233 0.01313
#> R^2(OLS|dr) 0.9987 0.9988 0.99997 1.00000
#>
#> Large-sample Marginal Dimension Tests:
#> Stat df p.value
#> 0D vs >= 1D 220.484 28 0.000000
#> 1D vs >= 2D 43.354 18 0.000713
#> 2D vs >= 3D 11.201 10 0.342038
#> 3D vs >= 4D 2.651 4 0.617748
dr.permutation.test(m1,npermute=100)
#> $summary
#> Stat p.value
#> 0D vs >= 1D 220.483739 0.0000000
#> 1D vs >= 2D 43.353869 0.0000000
#> 2D vs >= 3D 11.201479 0.2673267
#> 3D vs >= 4D 2.651387 0.5148515
#>
#> $npermute
#> [1] 100
#>
#> attr(,"class")
#> [1] "dr.permutation.test"
plot(m1)