spruce.RdThe spruce data frame has 1027 rows and 6 columns. The data consists
of measurements on 79 sitka spruce trees over two growing seasons. The trees
were grown in four controlled environment chambers, of which the first two,
containing 27 trees each, were treated with introduced ozone at 70 ppb whilst
the remaining two, containing 12 and 13 trees, were controls.
spruceThis data frame contains the following columns:
a numeric vector of chamber numbers
a factor with levels enriched and normal
a numeric vector of tree id
a numeric vector of the time when the measurements were taken, measured in days since Jan. 1, 1988
a numeric vector of the measurement number
a numeric vector of the log-size
Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994) Analysis of Longitudinal Data, Clarendon Press.
data(spruce)
spruce$contr <- ifelse(spruce$ozone=="enriched", 0, 1)
sitka88 <- spruce[spruce$wave <= 5,]
sitka89 <- spruce[spruce$wave > 5,]
fit.88 <- geese(logsize ~ as.factor(wave) + contr +
I(time/100*contr) - 1,
id=id, data=sitka88, corstr="ar1")
summary(fit.88)
#>
#> Call:
#> geese(formula = logsize ~ as.factor(wave) + contr + I(time/100 *
#> contr) - 1, id = id, data = sitka88, corstr = "ar1")
#>
#> Mean Model:
#> Mean Link: identity
#> Variance to Mean Relation: gaussian
#>
#> Coefficients:
#> estimate san.se wald p
#> as.factor(wave)1 4.0419 0.07909 2612.0473 0.000000
#> as.factor(wave)2 4.4653 0.07770 3302.9161 0.000000
#> as.factor(wave)3 4.8377 0.07729 3918.0609 0.000000
#> as.factor(wave)4 5.1744 0.08164 4017.0617 0.000000
#> as.factor(wave)5 5.3128 0.08286 4111.3549 0.000000
#> contr -0.1931 0.23591 0.6701 0.413018
#> I(time/100 * contr) 0.2075 0.06922 8.9879 0.002718
#>
#> Scale Model:
#> Scale Link: identity
#>
#> Estimated Scale Parameters:
#> estimate san.se wald p
#> (Intercept) 0.3879 0.06428 36.42 1.587e-09
#>
#> Correlation Model:
#> Correlation Structure: ar1
#> Correlation Link: identity
#>
#> Estimated Correlation Parameters:
#> estimate san.se wald p
#> alpha 0.9749 0.005533 31048 0
#>
#> Returned Error Value: 0
#> Number of clusters: 79 Maximum cluster size: 5
#>
fit.89 <- geese(logsize ~ as.factor(wave) + contr - 1,
id=id, data=sitka89, corstr="ar1")
summary(fit.89)
#>
#> Call:
#> geese(formula = logsize ~ as.factor(wave) + contr - 1, id = id,
#> data = sitka89, corstr = "ar1")
#>
#> Mean Model:
#> Mean Link: identity
#> Variance to Mean Relation: gaussian
#>
#> Coefficients:
#> estimate san.se wald p
#> as.factor(wave)6 5.5066 0.09007 3737.366 0.00000
#> as.factor(wave)7 5.5189 0.08983 3774.170 0.00000
#> as.factor(wave)8 5.6826 0.08811 4159.433 0.00000
#> as.factor(wave)9 5.9040 0.08759 4543.137 0.00000
#> as.factor(wave)10 6.0433 0.08970 4538.681 0.00000
#> as.factor(wave)11 6.1299 0.08858 4789.231 0.00000
#> as.factor(wave)12 6.1311 0.08752 4907.011 0.00000
#> as.factor(wave)13 6.1336 0.08914 4734.329 0.00000
#> contr 0.3458 0.15009 5.309 0.02122
#>
#> Scale Model:
#> Scale Link: identity
#>
#> Estimated Scale Parameters:
#> estimate san.se wald p
#> (Intercept) 0.4024 0.06795 35.07 3.177e-09
#>
#> Correlation Model:
#> Correlation Structure: ar1
#> Correlation Link: identity
#>
#> Estimated Correlation Parameters:
#> estimate san.se wald p
#> alpha 0.9937 0.001998 247376 0
#>
#> Returned Error Value: 0
#> Number of clusters: 79 Maximum cluster size: 8
#>