This set of geoms and stats allows you to display voronoi tesselation and
delaunay triangulation, both as polygons and as line segments. Furthermore
it lets you augment your point data with related summary statistics. The
computations are based on the deldir::deldir()
package.
geom_voronoi_tile(
mapping = NULL,
data = NULL,
stat = "voronoi_tile",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
max.radius = NULL,
normalize = FALSE,
asp.ratio = 1,
expand = 0,
radius = 0,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_voronoi_segment(
mapping = NULL,
data = NULL,
stat = "voronoi_segment",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_delaunay_tile(
mapping = NULL,
data = NULL,
stat = "delaunay_tile",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
expand = 0,
radius = 0,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_delaunay_segment(
mapping = NULL,
data = NULL,
stat = "delaunay_segment",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_delaunay_segment2(
mapping = NULL,
data = NULL,
stat = "delaunay_segment2",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
n = 100,
show.legend = NA,
inherit.aes = TRUE,
...
)
stat_delvor_summary(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
na.rm = FALSE,
bound = NULL,
eps = 1e-09,
normalize = FALSE,
asp.ratio = 1,
show.legend = NA,
inherit.aes = TRUE,
...
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
The statistical transformation to use on the data for this layer.
When using a geom_*()
function to construct a layer, the stat
argument can be used the override the default coupling between geoms and
stats. The stat
argument accepts the following:
A Stat
ggproto subclass, for example StatCount
.
A string naming the stat. To give the stat as a string, strip the
function name of the stat_
prefix. For example, to use stat_count()
,
give the stat as "count"
.
For more information and other ways to specify the stat, see the layer stat documentation.
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position
argument accepts the following:
The result of calling a position function, such as position_jitter()
.
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_
prefix. For example,
to use position_jitter()
, give the position as "jitter"
.
For more information and other ways to specify the position, see the layer position documentation.
If FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.
The bounding rectangle for the tesselation or a custom polygon
to clip the tesselation to. Defaults to NULL
which creates a rectangle
expanded 10\
vector giving the bounds in the following order: xmin, xmax, ymin, ymax. If
supplied as a polygon it should either be a 2-column matrix or a data.frame
containing an x
and y
column.
A value of epsilon used in testing whether a quantity is zero, mainly in the context of whether points are collinear. If anomalous errors arise, it is possible that these may averted by adjusting the value of eps upward or downward.
The maximum distance a tile can extend from the point of
origin. Will in effect clip each tile to a circle centered at the point with
the given radius. If normalize = TRUE
the radius will be given relative to
the normalized values
Should coordinates be normalized prior to calculations. If
x
and y
are in wildly different ranges it can lead to
tesselation and triangulation that seems off when plotted without
ggplot2::coord_fixed()
. Normalization of coordinates solves this.
The coordinates are transformed back after calculations.
If normalize = TRUE
the x values will be multiplied by this
amount after normalization.
A numeric or unit vector of length one, specifying the expansion amount. Negative values will result in contraction instead. If the value is given as a numeric it will be understood as a proportion of the plot area width.
As expand
but specifying the corner radius.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
Other arguments passed on to layer()
's params
argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the position
argument, or aesthetics that are required
can not be passed through ...
. Unknown arguments that are not part
of the 4 categories below are ignored.
Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, colour = "red"
or linewidth = 3
. The geom's documentation has an Aesthetics
section that lists the available options. The 'required' aesthetics
cannot be passed on to the params
. Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
When constructing a layer using
a stat_*()
function, the ...
argument can be used to pass on
parameters to the geom
part of the layer. An example of this is
stat_density(geom = "area", outline.type = "both")
. The geom's
documentation lists which parameters it can accept.
Inversely, when constructing a layer using a
geom_*()
function, the ...
argument can be used to pass on parameters
to the stat
part of the layer. An example of this is
geom_area(stat = "density", adjust = 0.5)
. The stat's documentation
lists which parameters it can accept.
The key_glyph
argument of layer()
may also be passed on through
...
. This can be one of the functions described as
key glyphs, to change the display of the layer in the legend.
The number of points to create for each segment
The geometric object to use to display the data for this layer.
When using a stat_*()
function to construct a layer, the geom
argument
can be used to override the default coupling between stats and geoms. The
geom
argument accepts the following:
A Geom
ggproto subclass, for example GeomPoint
.
A string naming the geom. To give the geom as a string, strip the
function name of the geom_
prefix. For example, to use geom_point()
,
give the geom as "point"
.
For more information and other ways to specify the geom, see the layer geom documentation.
geom_voronoi_tile and geom_delaunay_tile understand the following aesthetics (required aesthetics are in bold):
x
y
alpha
color
fill
linetype
size
geom_voronoi_segment, geom_delaunay_segment, and geom_delaunay_segment2 understand the following aesthetics (required aesthetics are in bold):
x
y
alpha
color
linetype
size
stat_delvor_summary computes the following variables:
If switch.centroid = TRUE
this will be the coordinates for
the voronoi tile centroid, otherwise it is the original point
If switch.centroid = FALSE
this will be the
coordinates for the voronoi tile centroid, otherwise it will be NULL
If switch.centroid = TRUE
this will be the
coordinates for the original point, otherwise it will be NULL
Number of triangles emanating from the point
The total area of triangles emanating from the point divided by 3
triarea
divided by the sum of the area of all
triangles
Number of sides on the voronoi tile associated with the point
Number of sides of the associated voronoi tile that is part of the bounding box
The area of the voronoi tile associated with the point
vorarea
divided by the sum of all voronoi tiles
# Voronoi
# You usually wants all points to take part in the same tesselation so set
# the group aesthetic to a constant (-1L is just a convention)
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +
geom_voronoi_tile(aes(fill = Species)) +
geom_voronoi_segment() +
geom_text(aes(label = after_stat(nsides), size = after_stat(vorarea)),
stat = 'delvor_summary', switch.centroid = TRUE
)
#> Warning: `stat_voronoi_tile()` is dropping duplicated points
#> Warning: `stat_voronoi_segment()` is dropping duplicated points
#> Warning: `stat_delvor_summary()` is dropping duplicated points
# Difference of normalize = TRUE (segment layer is calculated without
# normalisation)
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +
geom_voronoi_tile(aes(fill = Species), normalize = TRUE) +
geom_voronoi_segment()
#> Warning: `stat_voronoi_tile()` is dropping duplicated points
#> Warning: `stat_voronoi_segment()` is dropping duplicated points
# Set a max radius
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +
geom_voronoi_tile(aes(fill = Species), colour = 'black', max.radius = 0.25)
#> Warning: `stat_voronoi_tile()` is dropping duplicated points
# Set custom bounding polygon
triangle <- cbind(c(3, 9, 6), c(1, 1, 6))
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +
geom_voronoi_tile(aes(fill = Species), colour = 'black', bound = triangle)
#> Warning: `stat_voronoi_tile()` is dropping duplicated points
# Use geom_shape functionality to round corners etc
ggplot(iris, aes(Sepal.Length, Sepal.Width, group = -1L)) +
geom_voronoi_tile(aes(fill = Species), colour = 'black',
expand = unit(-.5, 'mm'), radius = unit(2, 'mm'))
#> Warning: `stat_voronoi_tile()` is dropping duplicated points
# Delaunay triangles
ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_delaunay_tile(alpha = 0.3, colour = 'black')
#> Warning: `stat_delaunay_tile()` is dropping duplicated points
# Use geom_delauney_segment2 to interpolate aestetics between end points
ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_delaunay_segment2(aes(colour = Species, group = -1), size = 2,
lineend = 'round')
#> Warning: `stat_delaunay_segment2()` is dropping duplicated points