StarshipClassDocs.RdPrint (or summarise) the results of a starship estimation
of the parameters of the Generalised Lambda Distribution
An object of class starship.
An object of class starship.
minimal number of significant digits, see
print.default.
arguments passed to print
summary Gives the details of the starship.adaptivegrid and optim steps.
Freimer, M., Mudholkar, G. S., Kollia, G. & Lin, C. T. (1988), A study of the generalized tukey lambda family, Communications in Statistics - Theory and Methods 17, 3547–3567.
Ramberg, J. S. & Schmeiser, B. W. (1974), An approximate method for generating asymmetric random variables, Communications of the ACM 17, 78–82.
King, R.A.R. & MacGillivray, H. L. (1999), A starship method for fitting the generalised \(\lambda\) distributions, Australian and New Zealand Journal of Statistics 41, 353–374
Owen, D. B. (1988), The starship, Communications in Statistics - Computation and Simulation 17, 315–323.
data <- rgl(100,0,1,.2,.2)
starship.result <- starship(data,optim.method="Nelder-Mead",initgrid=list(lcvect=(0:4)/10,
ldvect=(0:4)/10))
print(starship.result)
#> Starship estimate, gld type: FMKL
#> lambda1 lambda2 lambda3 lambda4
#> -0.09456 1.49926 -0.02293 -0.08808
summary(starship.result,estimation.details=TRUE)
#> Generalised Lambda Distribution FMKL type. Starship estimate.
#>
#> Optim (final) estimates:
#> Starship estimate, gld type: FMKL
#> lambda1 lambda2 lambda3 lambda4
#> -0.09456 1.49926 -0.02293 -0.08808
#> internal g-o-f measure at optim minimum: 0.1831044
#> optim.details:
#> Counts: function gradient
#> 231 NA
#> Convergence: [1] 0
#> Message: NULL