Extended version of the epil dataset of the MASS package. The three transformed variables Visit, Base, and Age used by Booth et al. (2003) have been added to epil.

epil2

Format

A data frame with 236 observations on the following 12 variables:

y

an integer vector.

trt

a factor with levels "placebo" and "progabide".

base

an integer vector.

age

an integer vector.

V4

an integer vector.

subject

an integer vector.

period

an integer vector.

lbase

a numeric vector.

lage

a numeric vector.

Visit

(rep(1:4,59) - 2.5) / 5.

Base

log(base/4).

Age

log(age).

References

Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed models. Statistical Modelling 3, 179–191.

Examples

# \donttest{
epil2$subject <- factor(epil2$subject)
op <- options(digits=3)
(fm <- glmmTMB(y ~ Base*trt + Age + Visit + (Visit|subject),
              data=epil2, family=nbinom2))
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>       AIC       BIC    logLik -2*log(L)  df.resid 
#>      1269      1304      -625      1249       226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
meths <- methods(class = class(fm))
if((Rv <- getRversion()) > "3.1.3") {
  funs <- attr(meths, "info")[, "generic"]
  funs <- setdiff(funs, "profile")  ## too slow! pkgdown is trying to run this??
  for(fun in funs[is.na(match(funs, "getME"))]) {
        cat(sprintf("%s:\n-----\n", fun))
        r <- tryCatch( get(fun)(fm), error=identity)
        if (inherits(r, "error")) cat("** Error:", r$message,"\n")
        else tryCatch( print(r) )
        cat(sprintf("---end{%s}--------------\n\n", fun))
  }
}
#> Anova:
#> -----
#> Analysis of Deviance Table (Type II Wald chisquare tests)
#> 
#> Response: y
#>           Chisq Df Pr(>Chisq)    
#> Base     107.66  1     <2e-16 ***
#> trt        4.52  1      0.033 *  
#> Age        1.79  1      0.180    
#> Visit      2.40  1      0.121    
#> Base:trt   2.71  1      0.100 .  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{Anova}--------------
#> 
#> Effect:
#> -----
#> ** Error: argument "mod" is missing, with no default 
#> ---end{Effect}--------------
#> 
#> VarCorr:
#> -----
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> ---end{VarCorr}--------------
#> 
#> anova:
#> -----
#> ** Error: no single-model anova() method for glmmTMB 
#> ---end{anova}--------------
#> 
#> bread:
#> -----
#>                   (Intercept)      Base trtprogabide      Age     Visit
#> (Intercept)           1.43367 -0.022869      0.03038 -0.41260  0.008343
#> Base                 -0.02287  0.017201      0.03157 -0.00242  0.000321
#> trtprogabide          0.03038  0.031572      0.16143 -0.02925  0.001870
#> Age                  -0.41260 -0.002417     -0.02925  0.12451 -0.002613
#> Visit                 0.00834  0.000321      0.00187 -0.00261  0.030015
#> Base:trtprogabide    -0.03366 -0.017596     -0.07637  0.01951 -0.001092
#>                   Base:trtprogabide
#> (Intercept)                -0.03366
#> Base                       -0.01760
#> trtprogabide               -0.07637
#> Age                         0.01951
#> Visit                      -0.00109
#> Base:trtprogabide           0.04172
#> ---end{bread}--------------
#> 
#> coef:
#> -----
#> $subject
#>    (Intercept)  Base trtprogabide   Age  Visit Base:trtprogabide
#> 1       -1.286 0.884       -0.928 0.473 -0.269             0.336
#> 2       -1.275 0.884       -0.928 0.473 -0.269             0.336
#> 3       -1.037 0.884       -0.928 0.473 -0.273             0.336
#> 4       -1.196 0.884       -0.928 0.473 -0.270             0.336
#> 5       -1.312 0.884       -0.928 0.473 -0.269             0.336
#> 6       -1.505 0.884       -0.928 0.473 -0.266             0.336
#> 7       -1.442 0.884       -0.928 0.473 -0.267             0.336
#> 8       -0.975 0.884       -0.928 0.473 -0.274             0.336
#> 9       -1.489 0.884       -0.928 0.473 -0.266             0.336
#> 10      -0.528 0.884       -0.928 0.473 -0.281             0.336
#> 11      -1.192 0.884       -0.928 0.473 -0.270             0.336
#> 12      -1.353 0.884       -0.928 0.473 -0.268             0.336
#> 13      -1.396 0.884       -0.928 0.473 -0.267             0.336
#> 14      -1.395 0.884       -0.928 0.473 -0.267             0.336
#> 15      -1.532 0.884       -0.928 0.473 -0.265             0.336
#> 16      -2.076 0.884       -0.928 0.473 -0.257             0.336
#> 17      -1.979 0.884       -0.928 0.473 -0.258             0.336
#> 18      -1.168 0.884       -0.928 0.473 -0.271             0.336
#> 19      -1.545 0.884       -0.928 0.473 -0.265             0.336
#> 20      -1.424 0.884       -0.928 0.473 -0.267             0.336
#> 21      -1.314 0.884       -0.928 0.473 -0.269             0.336
#> 22      -1.042 0.884       -0.928 0.473 -0.273             0.336
#> 23      -1.598 0.884       -0.928 0.473 -0.264             0.336
#> 24      -1.253 0.884       -0.928 0.473 -0.270             0.336
#> 25      -0.486 0.884       -0.928 0.473 -0.282             0.336
#> 26      -1.725 0.884       -0.928 0.473 -0.262             0.336
#> 27      -1.300 0.884       -0.928 0.473 -0.269             0.336
#> 28      -1.108 0.884       -0.928 0.473 -0.272             0.336
#> 29      -1.609 0.884       -0.928 0.473 -0.264             0.336
#> 30      -1.469 0.884       -0.928 0.473 -0.266             0.336
#> 31      -1.612 0.884       -0.928 0.473 -0.264             0.336
#> 32      -0.867 0.884       -0.928 0.473 -0.276             0.336
#> 33      -0.935 0.884       -0.928 0.473 -0.274             0.336
#> 34      -1.599 0.884       -0.928 0.473 -0.264             0.336
#> 35      -0.447 0.884       -0.928 0.473 -0.282             0.336
#> 36      -0.856 0.884       -0.928 0.473 -0.276             0.336
#> 37      -1.094 0.884       -0.928 0.473 -0.272             0.336
#> 38      -1.924 0.884       -0.928 0.473 -0.259             0.336
#> 39      -1.380 0.884       -0.928 0.473 -0.268             0.336
#> 40      -1.327 0.884       -0.928 0.473 -0.268             0.336
#> 41      -1.823 0.884       -0.928 0.473 -0.261             0.336
#> 42      -1.218 0.884       -0.928 0.473 -0.270             0.336
#> 43      -0.986 0.884       -0.928 0.473 -0.274             0.336
#> 44      -1.324 0.884       -0.928 0.473 -0.268             0.336
#> 45      -1.254 0.884       -0.928 0.473 -0.269             0.336
#> 46      -1.001 0.884       -0.928 0.473 -0.273             0.336
#> 47      -1.238 0.884       -0.928 0.473 -0.270             0.336
#> 48      -1.655 0.884       -0.928 0.473 -0.263             0.336
#> 49      -0.742 0.884       -0.928 0.473 -0.278             0.336
#> 50      -1.516 0.884       -0.928 0.473 -0.265             0.336
#> 51      -1.504 0.884       -0.928 0.473 -0.266             0.336
#> 52      -1.992 0.884       -0.928 0.473 -0.258             0.336
#> 53      -0.950 0.884       -0.928 0.473 -0.274             0.336
#> 54      -1.672 0.884       -0.928 0.473 -0.263             0.336
#> 55      -1.158 0.884       -0.928 0.473 -0.271             0.336
#> 56      -0.369 0.884       -0.928 0.473 -0.283             0.336
#> 57      -1.892 0.884       -0.928 0.473 -0.260             0.336
#> 58      -2.136 0.884       -0.928 0.473 -0.256             0.336
#> 59      -1.249 0.884       -0.928 0.473 -0.270             0.336
#> 
#> ---end{coef}--------------
#> 
#> confint:
#> -----
#>                                   2.5 %    97.5 % Estimate
#> (Intercept)                   -3.67e+00  1.02e+00  -1.3225
#> Base                           6.27e-01  1.14e+00   0.8843
#> trtprogabide                  -1.72e+00 -1.41e-01  -0.9284
#> Age                           -2.19e-01  1.16e+00   0.4727
#> Visit                         -6.08e-01  7.11e-02  -0.2684
#> Base:trtprogabide             -6.40e-02  7.37e-01   0.3363
#> Std.Dev.(Intercept)|subject    3.57e-01  6.08e-01   0.4660
#> Std.Dev.Visit|subject          2.91e-26  1.83e+21   0.0073
#> Cor.Visit.(Intercept)|subject -1.00e+00  1.00e+00  -0.9990
#> ---end{confint}--------------
#> 
#> deviance:
#> -----
#> [1] 226
#> ---end{deviance}--------------
#> 
#> df.residual:
#> -----
#> [1] 226
#> ---end{df.residual}--------------
#> 
#> emm_basis:
#> -----
#> ** Error: argument "trms" is missing, with no default 
#> ---end{emm_basis}--------------
#> 
#> estfun:
#> -----
#>    (Intercept)     Base trtprogabide       Age    Visit Base:trtprogabide
#> 1      0.12118  0.12258       0.0000   0.41611 -0.28033            0.0000
#> 2      0.17936  0.18144       0.0000   0.61002 -0.01617            0.0000
#> 3      1.25828  0.51019       0.0000   4.05024  0.48607            0.0000
#> 4      0.53396  0.37011       0.0000   1.91346 -0.08859            0.0000
#> 5      0.09434  0.26448       0.0000   0.29162  1.41578            0.0000
#> 6     -0.83740 -1.59905       0.0000  -2.81978  0.84190            0.0000
#> 7     -0.61037 -0.67057       0.0000  -2.09602 -0.99693            0.0000
#> 8      1.60670  4.12111       0.0000   6.00532 -1.81097            0.0000
#> 9     -0.77614 -1.35762       0.0000  -2.80258  0.16208            0.0000
#> 10     3.61484  3.31224       0.0000  12.04538 -2.43170            0.0000
#> 11     0.62486  1.60274       0.0000   2.23921 -0.22542            0.0000
#> 12    -0.15342 -0.32375       0.0000  -0.48758 -0.89353            0.0000
#> 13    -0.37136 -0.55855       0.0000  -1.16439 -0.12847            0.0000
#> 14    -0.29841 -0.70168       0.0000  -1.06936  1.21097            0.0000
#> 15    -0.95261 -2.93368       0.0000  -3.10370 -0.90996            0.0000
#> 16    -3.50030 -8.84082       0.0000 -11.40433 -0.85762            0.0000
#> 17    -3.06830 -4.61496       0.0000 -10.22419  0.98071            0.0000
#> 18     0.74668  2.48139       0.0000   2.56409 -0.15687            0.0000
#> 19    -1.04906 -1.57786       0.0000  -3.63575  0.32928            0.0000
#> 20    -0.47511 -0.76466       0.0000  -1.44649  1.29735            0.0000
#> 21     0.00206  0.00227       0.0000   0.00695  0.26211            0.0000
#> 22     1.24676  1.01104       0.0000   3.79580  0.26332            0.0000
#> 23    -1.29629 -1.87562       0.0000  -4.49259  0.72477            0.0000
#> 24     0.31459  0.61216       0.0000   1.01262 -0.30075            0.0000
#> 25     3.91639 10.26502       0.0000  13.32043  1.68944            0.0000
#> 26    -1.92142 -1.55814       0.0000  -7.08788 -0.07612            0.0000
#> 27     0.04349  0.03985       0.0000   0.12805  0.09899            0.0000
#> 28     1.00668  2.48031       0.0000   3.11169  0.06645            0.0000
#> 29    -1.30656 -3.84708      -1.3066  -3.77644 -0.34315           -3.8471
#> 30    -0.68186 -1.53505      -0.6819  -2.36313 -0.32590           -1.5351
#> 31    -1.39800 -2.17829      -1.3980  -4.18804 -0.00574           -2.1783
#> 32     2.03781  1.86723       2.0378   6.93101 -0.26381            1.8672
#> 33     1.76081  2.74360       1.7608   5.08941  0.58590            2.7436
#> 34    -1.32403 -2.37234      -1.3240  -4.20783 -0.23109           -2.3723
#> 35     4.05168  8.29659       4.0517  13.78056 -0.19937            8.2966
#> 36     2.12227  2.65870       2.1223   7.54540  0.15085            2.6587
#> 37     0.98986  1.00134       0.9899   3.26240  0.25192            1.0013
#> 38    -2.75990 -7.77849      -2.7599  -8.26792  0.76330           -7.7785
#> 39    -0.27204 -0.63312      -0.2720  -0.84089 -0.48999           -0.6331
#> 40    -0.12372 -0.06923      -0.1237  -0.41225 -0.47912           -0.0692
#> 41    -2.36773 -4.03638      -2.3677  -7.42399  0.22463           -4.0364
#> 42     0.41891  0.49375       0.4189   1.54532 -0.60476            0.4938
#> 43     1.59133  3.88658       1.5913   5.56410  1.01171            3.8866
#> 44    -0.01695 -0.03724      -0.0169  -0.05160 -0.21778           -0.0372
#> 45     0.30280  0.68169       0.3028   1.07655 -1.37290            0.6817
#> 46     1.40323  0.78527       1.4032   4.51681  0.65890            0.7853
#> 47     0.39735  0.87306       0.3973   1.29459  0.39039            0.8731
#> 48    -1.62997 -1.64888      -1.6300  -5.24668 -0.54884           -1.6489
#> 49     2.70827  9.83371       2.7083   8.37139 -0.65274            9.8337
#> 50    -0.93107 -1.58724      -0.9311  -3.22685  0.06219           -1.5872
#> 51    -0.83922 -1.95309      -0.8392  -2.70133 -0.01494           -1.9531
#> 52    -3.10856 -6.46407      -3.1086 -11.05201  0.78568           -6.4641
#> 53     1.74914  4.61608       1.7491   5.32529  0.33732            4.6161
#> 54    -1.66121 -2.97649      -1.6612  -6.16903 -0.99968           -2.9765
#> 55     0.71734  0.99444       0.7173   2.48610  0.05479            0.9944
#> 56     4.41706  7.52997       4.4171  14.39121  0.90410            7.5300
#> 57    -2.69044 -4.93046      -2.6904  -8.19111 -0.37097           -4.9305
#> 58    -3.83816 -4.52387      -3.8382 -13.75413  0.04234           -4.5239
#> 59     0.28156  0.30933       0.2816   1.01670  0.24094            0.3093
#> ---end{estfun}--------------
#> 
#> extractAIC:
#> -----
#> [1]   10 1269
#> ---end{extractAIC}--------------
#> 
#> family:
#> -----
#> 
#> Family: nbinom2 
#> Link function: log 
#> 
#> ---end{family}--------------
#> 
#> fitted:
#> -----
#>   [1]  3.582  3.394  3.217  3.049  3.527  3.342  3.168  3.002  1.893  1.794
#>  [11]  1.700  1.611  2.901  2.749  2.605  2.469 14.852 14.076 13.340 12.643
#>  [21]  7.678  7.277  6.896  6.536  3.868  3.666  3.474  3.293 16.330 15.476
#>  [31] 14.667 13.901  7.476  7.085  6.715  6.364  3.138  2.974  2.818  2.671
#>  [41] 15.182 14.388 13.636 12.924  8.384  7.946  7.531  7.137  4.808  4.556
#>  [51]  4.318  4.093 12.569 11.912 11.290 10.700 20.520 19.447 18.431 17.467
#>  [61] 12.574 11.916 11.294 10.703  5.276  5.000  4.739  4.491 27.659 26.214
#>  [71] 24.843 23.545  5.620  5.326  5.048  4.784  5.055  4.791  4.540  4.303
#>  [81]  3.748  3.552  3.367  3.191  2.495  2.365  2.241  2.124  5.343  5.064
#>  [91]  4.799  4.548  7.392  7.005  6.639  6.292 14.637 13.872 13.147 12.459
#> [101]  3.383  3.207  3.039  2.880  2.612  2.476  2.346  2.224 11.000 10.425
#> [111]  9.880  9.364 16.278 15.427 14.621 13.857  9.168  8.689  8.235  7.805
#> [121]  3.151  2.986  2.830  2.682  1.743  1.652  1.566  1.484  2.997  2.841
#> [131]  2.692  2.552  4.567  4.328  4.102  3.888  6.936  6.574  6.230  5.904
#> [141]  2.827  2.680  2.540  2.407  1.863  1.766  1.674  1.586 14.670 13.903
#> [151] 13.176 12.488  8.427  7.986  7.569  7.173  1.086  1.030  0.976  0.925
#> [161]  4.025  3.815  3.615  3.426  2.751  2.607  2.471  2.342 11.746 11.132
#> [171] 10.550  9.999  7.033  6.666  6.317  5.987  9.565  9.065  8.591  8.142
#> [181]  1.035  0.981  0.930  0.881  7.781  7.374  6.988  6.623  1.797  1.703
#> [191]  1.614  1.529 41.374 39.212 37.162 35.220  4.705  4.459  4.226  4.005
#> [201]  8.952  8.484  8.040  7.620  7.755  7.350  6.966  6.602 12.061 11.430
#> [211] 10.833 10.267  5.883  5.575  5.284  5.008  3.190  3.023  2.865  2.715
#> [221]  4.265  4.042  3.831  3.631  4.507  4.271  4.048  3.836  2.617  2.481
#> [231]  2.351  2.228  2.405  2.279  2.160  2.047
#> ---end{fitted}--------------
#> 
#> fixef:
#> -----
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> ---end{fixef}--------------
#> 
#> formula:
#> -----
#> y ~ Base * trt + Age + Visit + (Visit | subject)
#> <environment: 0x58fda83e04c8>
#> ---end{formula}--------------
#> 
#> getGroups:
#> -----
#>   [1] 1  1  1  1  2  2  2  2  3  3  3  3  4  4  4  4  5  5  5  5  6  6  6  6  7 
#>  [26] 7  7  7  8  8  8  8  9  9  9  9  10 10 10 10 11 11 11 11 12 12 12 12 13 13
#>  [51] 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19
#>  [76] 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25
#> [101] 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 31 31 31 31 32
#> [126] 32 32 32 33 33 33 33 34 34 34 34 35 35 35 35 36 36 36 36 37 37 37 37 38 38
#> [151] 38 38 39 39 39 39 40 40 40 40 41 41 41 41 42 42 42 42 43 43 43 43 44 44 44
#> [176] 44 45 45 45 45 46 46 46 46 47 47 47 47 48 48 48 48 49 49 49 49 50 50 50 50
#> [201] 51 51 51 51 52 52 52 52 53 53 53 53 54 54 54 54 55 55 55 55 56 56 56 56 57
#> [226] 57 57 57 58 58 58 58 59 59 59 59
#> attr(,"group")
#> [1] subject
#> 59 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 59
#> ---end{getGroups}--------------
#> 
#> logLik:
#> -----
#> 'log Lik.' -625 (df=10)
#> ---end{logLik}--------------
#> 
#> meatHC:
#> -----
#>                   (Intercept)    Base trtprogabide     Age Visit
#> (Intercept)            190.12  355.76       122.39  632.37 -1.02
#> Base                   355.76  763.07       230.64 1175.21  5.47
#> trtprogabide           122.39  230.64       122.39  404.37  4.64
#> Age                    632.37 1175.21       404.37 2110.82 -5.08
#> Visit                   -1.02    5.47         4.64   -5.08 32.86
#> Base:trtprogabide      230.64  490.11       230.64  753.98  2.00
#>                   Base:trtprogabide
#> (Intercept)                     231
#> Base                            490
#> trtprogabide                    231
#> Age                             754
#> Visit                             2
#> Base:trtprogabide               490
#> ---end{meatHC}--------------
#> 
#> model.frame:
#> -----
#>       y  Base       trt  Age Visit subject
#> 1     5 1.012   placebo 3.43  -0.3       1
#> 2     3 1.012   placebo 3.43  -0.1       1
#> 3     3 1.012   placebo 3.43   0.1       1
#> 4     3 1.012   placebo 3.43   0.3       1
#> 5     3 1.012   placebo 3.40  -0.3       2
#> 6     5 1.012   placebo 3.40  -0.1       2
#> 7     3 1.012   placebo 3.40   0.1       2
#> 8     3 1.012   placebo 3.40   0.3       2
#> 9     2 0.405   placebo 3.22  -0.3       3
#> 10    4 0.405   placebo 3.22  -0.1       3
#> 11    0 0.405   placebo 3.22   0.1       3
#> 12    5 0.405   placebo 3.22   0.3       3
#> 13    4 0.693   placebo 3.58  -0.3       4
#> 14    4 0.693   placebo 3.58  -0.1       4
#> 15    1 0.693   placebo 3.58   0.1       4
#> 16    4 0.693   placebo 3.58   0.3       4
#> 17    7 2.803   placebo 3.09  -0.3       5
#> 18   18 2.803   placebo 3.09  -0.1       5
#> 19    9 2.803   placebo 3.09   0.1       5
#> 20   21 2.803   placebo 3.09   0.3       5
#> 21    5 1.910   placebo 3.37  -0.3       6
#> 22    2 1.910   placebo 3.37  -0.1       6
#> 23    8 1.910   placebo 3.37   0.1       6
#> 24    7 1.910   placebo 3.37   0.3       6
#> 25    6 1.099   placebo 3.43  -0.3       7
#> 26    4 1.099   placebo 3.43  -0.1       7
#> 27    0 1.099   placebo 3.43   0.1       7
#> 28    2 1.099   placebo 3.43   0.3       7
#> 29   40 2.565   placebo 3.74  -0.3       8
#> 30   20 2.565   placebo 3.74  -0.1       8
#> 31   21 2.565   placebo 3.74   0.1       8
#> 32   12 2.565   placebo 3.74   0.3       8
#> 33    5 1.749   placebo 3.61  -0.3       9
#> 34    6 1.749   placebo 3.61  -0.1       9
#> 35    6 1.749   placebo 3.61   0.1       9
#> 36    5 1.749   placebo 3.61   0.3       9
#> 37   14 0.916   placebo 3.33  -0.3      10
#> 38   13 0.916   placebo 3.33  -0.1      10
#> 39    6 0.916   placebo 3.33   0.1      10
#> 40    0 0.916   placebo 3.33   0.3      10
#> 41   26 2.565   placebo 3.58  -0.3      11
#> 42   12 2.565   placebo 3.58  -0.1      11
#> 43    6 2.565   placebo 3.58   0.1      11
#> 44   22 2.565   placebo 3.58   0.3      11
#> 45   12 2.110   placebo 3.18  -0.3      12
#> 46    6 2.110   placebo 3.18  -0.1      12
#> 47    8 2.110   placebo 3.18   0.1      12
#> 48    4 2.110   placebo 3.18   0.3      12
#> 49    4 1.504   placebo 3.14  -0.3      13
#> 50    4 1.504   placebo 3.14  -0.1      13
#> 51    6 1.504   placebo 3.14   0.1      13
#> 52    2 1.504   placebo 3.14   0.3      13
#> 53    7 2.351   placebo 3.58  -0.3      14
#> 54    9 2.351   placebo 3.58  -0.1      14
#> 55   12 2.351   placebo 3.58   0.1      14
#> 56   14 2.351   placebo 3.58   0.3      14
#> 57   16 3.080   placebo 3.26  -0.3      15
#> 58   24 3.080   placebo 3.26  -0.1      15
#> 59   10 3.080   placebo 3.26   0.1      15
#> 60    9 3.080   placebo 3.26   0.3      15
#> 61   11 2.526   placebo 3.26  -0.3      16
#> 62    0 2.526   placebo 3.26  -0.1      16
#> 63    0 2.526   placebo 3.26   0.1      16
#> 64    5 2.526   placebo 3.26   0.3      16
#> 65    0 1.504   placebo 3.33  -0.3      17
#> 66    0 1.504   placebo 3.33  -0.1      17
#> 67    3 1.504   placebo 3.33   0.1      17
#> 68    3 1.504   placebo 3.33   0.3      17
#> 69   37 3.323   placebo 3.43  -0.3      18
#> 70   29 3.323   placebo 3.43  -0.1      18
#> 71   28 3.323   placebo 3.43   0.1      18
#> 72   29 3.323   placebo 3.43   0.3      18
#> 73    3 1.504   placebo 3.47  -0.3      19
#> 74    5 1.504   placebo 3.47  -0.1      19
#> 75    2 1.504   placebo 3.47   0.1      19
#> 76    5 1.504   placebo 3.47   0.3      19
#> 77    3 1.609   placebo 3.04  -0.3      20
#> 78    0 1.609   placebo 3.04  -0.1      20
#> 79    6 1.609   placebo 3.04   0.1      20
#> 80    7 1.609   placebo 3.04   0.3      20
#> 81    3 1.099   placebo 3.37  -0.3      21
#> 82    4 1.099   placebo 3.37  -0.1      21
#> 83    3 1.099   placebo 3.37   0.1      21
#> 84    4 1.099   placebo 3.37   0.3      21
#> 85    3 0.811   placebo 3.04  -0.3      22
#> 86    4 0.811   placebo 3.04  -0.1      22
#> 87    3 0.811   placebo 3.04   0.1      22
#> 88    4 0.811   placebo 3.04   0.3      22
#> 89    2 1.447   placebo 3.47  -0.3      23
#> 90    3 1.447   placebo 3.47  -0.1      23
#> 91    3 1.447   placebo 3.47   0.1      23
#> 92    5 1.447   placebo 3.47   0.3      23
#> 93    8 1.946   placebo 3.22  -0.3      24
#> 94   12 1.946   placebo 3.22  -0.1      24
#> 95    2 1.946   placebo 3.22   0.1      24
#> 96    8 1.946   placebo 3.22   0.3      24
#> 97   18 2.621   placebo 3.40  -0.3      25
#> 98   24 2.621   placebo 3.40  -0.1      25
#> 99   76 2.621   placebo 3.40   0.1      25
#> 100  25 2.621   placebo 3.40   0.3      25
#> 101   2 0.811   placebo 3.69  -0.3      26
#> 102   1 0.811   placebo 3.69  -0.1      26
#> 103   2 0.811   placebo 3.69   0.1      26
#> 104   1 0.811   placebo 3.69   0.3      26
#> 105   3 0.916   placebo 2.94  -0.3      27
#> 106   1 0.916   placebo 2.94  -0.1      27
#> 107   4 0.916   placebo 2.94   0.1      27
#> 108   2 0.916   placebo 2.94   0.3      27
#> 109  13 2.464   placebo 3.09  -0.3      28
#> 110  15 2.464   placebo 3.09  -0.1      28
#> 111  13 2.464   placebo 3.09   0.1      28
#> 112  12 2.464   placebo 3.09   0.3      28
#> 113  11 2.944 progabide 2.89  -0.3      29
#> 114  14 2.944 progabide 2.89  -0.1      29
#> 115   9 2.944 progabide 2.89   0.1      29
#> 116   8 2.944 progabide 2.89   0.3      29
#> 117   8 2.251 progabide 3.47  -0.3      30
#> 118   7 2.251 progabide 3.47  -0.1      30
#> 119   9 2.251 progabide 3.47   0.1      30
#> 120   4 2.251 progabide 3.47   0.3      30
#> 121   0 1.558 progabide 3.00  -0.3      31
#> 122   4 1.558 progabide 3.00  -0.1      31
#> 123   3 1.558 progabide 3.00   0.1      31
#> 124   0 1.558 progabide 3.00   0.3      31
#> 125   3 0.916 progabide 3.40  -0.3      32
#> 126   6 0.916 progabide 3.40  -0.1      32
#> 127   1 0.916 progabide 3.40   0.1      32
#> 128   3 0.916 progabide 3.40   0.3      32
#> 129   2 1.558 progabide 2.89  -0.3      33
#> 130   6 1.558 progabide 2.89  -0.1      33
#> 131   7 1.558 progabide 2.89   0.1      33
#> 132   4 1.558 progabide 2.89   0.3      33
#> 133   4 1.792 progabide 3.18  -0.3      34
#> 134   3 1.792 progabide 3.18  -0.1      34
#> 135   1 1.792 progabide 3.18   0.1      34
#> 136   3 1.792 progabide 3.18   0.3      34
#> 137  22 2.048 progabide 3.40  -0.3      35
#> 138  17 2.048 progabide 3.40  -0.1      35
#> 139  19 2.048 progabide 3.40   0.1      35
#> 140  16 2.048 progabide 3.40   0.3      35
#> 141   5 1.253 progabide 3.56  -0.3      36
#> 142   4 1.253 progabide 3.56  -0.1      36
#> 143   7 1.253 progabide 3.56   0.1      36
#> 144   4 1.253 progabide 3.56   0.3      36
#> 145   2 1.012 progabide 3.30  -0.3      37
#> 146   4 1.012 progabide 3.30  -0.1      37
#> 147   0 1.012 progabide 3.30   0.1      37
#> 148   4 1.012 progabide 3.30   0.3      37
#> 149   3 2.818 progabide 3.00  -0.3      38
#> 150   7 2.818 progabide 3.00  -0.1      38
#> 151   7 2.818 progabide 3.00   0.1      38
#> 152   7 2.818 progabide 3.00   0.3      38
#> 153   4 2.327 progabide 3.09  -0.3      39
#> 154  18 2.327 progabide 3.09  -0.1      39
#> 155   2 2.327 progabide 3.09   0.1      39
#> 156   5 2.327 progabide 3.09   0.3      39
#> 157   2 0.560 progabide 3.33  -0.3      40
#> 158   1 0.560 progabide 3.33  -0.1      40
#> 159   1 0.560 progabide 3.33   0.1      40
#> 160   0 0.560 progabide 3.33   0.3      40
#> 161   0 1.705 progabide 3.14  -0.3      41
#> 162   2 1.705 progabide 3.14  -0.1      41
#> 163   4 1.705 progabide 3.14   0.1      41
#> 164   0 1.705 progabide 3.14   0.3      41
#> 165   5 1.179 progabide 3.69  -0.3      42
#> 166   4 1.179 progabide 3.69  -0.1      42
#> 167   0 1.179 progabide 3.69   0.1      42
#> 168   3 1.179 progabide 3.69   0.3      42
#> 169  11 2.442 progabide 3.50  -0.3      43
#> 170  14 2.442 progabide 3.50  -0.1      43
#> 171  25 2.442 progabide 3.50   0.1      43
#> 172  15 2.442 progabide 3.50   0.3      43
#> 173  10 2.197 progabide 3.04  -0.3      44
#> 174   5 2.197 progabide 3.04  -0.1      44
#> 175   3 2.197 progabide 3.04   0.1      44
#> 176   8 2.197 progabide 3.04   0.3      44
#> 177  19 2.251 progabide 3.56  -0.3      45
#> 178   7 2.251 progabide 3.56  -0.1      45
#> 179   6 2.251 progabide 3.56   0.1      45
#> 180   7 2.251 progabide 3.56   0.3      45
#> 181   1 0.560 progabide 3.22  -0.3      46
#> 182   1 0.560 progabide 3.22  -0.1      46
#> 183   2 0.560 progabide 3.22   0.1      46
#> 184   3 0.560 progabide 3.22   0.3      46
#> 185   6 2.197 progabide 3.26  -0.3      47
#> 186  10 2.197 progabide 3.26  -0.1      47
#> 187   8 2.197 progabide 3.26   0.1      47
#> 188   8 2.197 progabide 3.26   0.3      47
#> 189   2 1.012 progabide 3.22  -0.3      48
#> 190   1 1.012 progabide 3.22  -0.1      48
#> 191   0 1.012 progabide 3.22   0.1      48
#> 192   0 1.012 progabide 3.22   0.3      48
#> 193 102 3.631 progabide 3.09  -0.3      49
#> 194  65 3.631 progabide 3.09  -0.1      49
#> 195  72 3.631 progabide 3.09   0.1      49
#> 196  63 3.631 progabide 3.09   0.3      49
#> 197   4 1.705 progabide 3.47  -0.3      50
#> 198   3 1.705 progabide 3.47  -0.1      50
#> 199   2 1.705 progabide 3.47   0.1      50
#> 200   4 1.705 progabide 3.47   0.3      50
#> 201   8 2.327 progabide 3.22  -0.3      51
#> 202   6 2.327 progabide 3.22  -0.1      51
#> 203   5 2.327 progabide 3.22   0.1      51
#> 204   7 2.327 progabide 3.22   0.3      51
#> 205   1 2.079 progabide 3.56  -0.3      52
#> 206   3 2.079 progabide 3.56  -0.1      52
#> 207   1 2.079 progabide 3.56   0.1      52
#> 208   5 2.079 progabide 3.56   0.3      52
#> 209  18 2.639 progabide 3.04  -0.3      53
#> 210  11 2.639 progabide 3.04  -0.1      53
#> 211  28 2.639 progabide 3.04   0.1      53
#> 212  13 2.639 progabide 3.04   0.3      53
#> 213   6 1.792 progabide 3.71  -0.3      54
#> 214   3 1.792 progabide 3.71  -0.1      54
#> 215   4 1.792 progabide 3.71   0.1      54
#> 216   0 1.792 progabide 3.71   0.3      54
#> 217   3 1.386 progabide 3.47  -0.3      55
#> 218   5 1.386 progabide 3.47  -0.1      55
#> 219   4 1.386 progabide 3.47   0.1      55
#> 220   3 1.386 progabide 3.47   0.3      55
#> 221   1 1.705 progabide 3.26  -0.3      56
#> 222  23 1.705 progabide 3.26  -0.1      56
#> 223  19 1.705 progabide 3.26   0.1      56
#> 224   8 1.705 progabide 3.26   0.3      56
#> 225   2 1.833 progabide 3.04  -0.3      57
#> 226   3 1.833 progabide 3.04  -0.1      57
#> 227   0 1.833 progabide 3.04   0.1      57
#> 228   1 1.833 progabide 3.04   0.3      57
#> 229   0 1.179 progabide 3.58  -0.3      58
#> 230   0 1.179 progabide 3.58  -0.1      58
#> 231   0 1.179 progabide 3.58   0.1      58
#> 232   0 1.179 progabide 3.58   0.3      58
#> 233   1 1.099 progabide 3.61  -0.3      59
#> 234   4 1.099 progabide 3.61  -0.1      59
#> 235   3 1.099 progabide 3.61   0.1      59
#> 236   2 1.099 progabide 3.61   0.3      59
#> ---end{model.frame}--------------
#> 
#> model.matrix:
#> -----
#>     (Intercept)  Base trtprogabide  Age Visit Base:trtprogabide
#> 1             1 1.012            0 3.43  -0.3             0.000
#> 2             1 1.012            0 3.43  -0.1             0.000
#> 3             1 1.012            0 3.43   0.1             0.000
#> 4             1 1.012            0 3.43   0.3             0.000
#> 5             1 1.012            0 3.40  -0.3             0.000
#> 6             1 1.012            0 3.40  -0.1             0.000
#> 7             1 1.012            0 3.40   0.1             0.000
#> 8             1 1.012            0 3.40   0.3             0.000
#> 9             1 0.405            0 3.22  -0.3             0.000
#> 10            1 0.405            0 3.22  -0.1             0.000
#> 11            1 0.405            0 3.22   0.1             0.000
#> 12            1 0.405            0 3.22   0.3             0.000
#> 13            1 0.693            0 3.58  -0.3             0.000
#> 14            1 0.693            0 3.58  -0.1             0.000
#> 15            1 0.693            0 3.58   0.1             0.000
#> 16            1 0.693            0 3.58   0.3             0.000
#> 17            1 2.803            0 3.09  -0.3             0.000
#> 18            1 2.803            0 3.09  -0.1             0.000
#> 19            1 2.803            0 3.09   0.1             0.000
#> 20            1 2.803            0 3.09   0.3             0.000
#> 21            1 1.910            0 3.37  -0.3             0.000
#> 22            1 1.910            0 3.37  -0.1             0.000
#> 23            1 1.910            0 3.37   0.1             0.000
#> 24            1 1.910            0 3.37   0.3             0.000
#> 25            1 1.099            0 3.43  -0.3             0.000
#> 26            1 1.099            0 3.43  -0.1             0.000
#> 27            1 1.099            0 3.43   0.1             0.000
#> 28            1 1.099            0 3.43   0.3             0.000
#> 29            1 2.565            0 3.74  -0.3             0.000
#> 30            1 2.565            0 3.74  -0.1             0.000
#> 31            1 2.565            0 3.74   0.1             0.000
#> 32            1 2.565            0 3.74   0.3             0.000
#> 33            1 1.749            0 3.61  -0.3             0.000
#> 34            1 1.749            0 3.61  -0.1             0.000
#> 35            1 1.749            0 3.61   0.1             0.000
#> 36            1 1.749            0 3.61   0.3             0.000
#> 37            1 0.916            0 3.33  -0.3             0.000
#> 38            1 0.916            0 3.33  -0.1             0.000
#> 39            1 0.916            0 3.33   0.1             0.000
#> 40            1 0.916            0 3.33   0.3             0.000
#> 41            1 2.565            0 3.58  -0.3             0.000
#> 42            1 2.565            0 3.58  -0.1             0.000
#> 43            1 2.565            0 3.58   0.1             0.000
#> 44            1 2.565            0 3.58   0.3             0.000
#> 45            1 2.110            0 3.18  -0.3             0.000
#> 46            1 2.110            0 3.18  -0.1             0.000
#> 47            1 2.110            0 3.18   0.1             0.000
#> 48            1 2.110            0 3.18   0.3             0.000
#> 49            1 1.504            0 3.14  -0.3             0.000
#> 50            1 1.504            0 3.14  -0.1             0.000
#> 51            1 1.504            0 3.14   0.1             0.000
#> 52            1 1.504            0 3.14   0.3             0.000
#> 53            1 2.351            0 3.58  -0.3             0.000
#> 54            1 2.351            0 3.58  -0.1             0.000
#> 55            1 2.351            0 3.58   0.1             0.000
#> 56            1 2.351            0 3.58   0.3             0.000
#> 57            1 3.080            0 3.26  -0.3             0.000
#> 58            1 3.080            0 3.26  -0.1             0.000
#> 59            1 3.080            0 3.26   0.1             0.000
#> 60            1 3.080            0 3.26   0.3             0.000
#> 61            1 2.526            0 3.26  -0.3             0.000
#> 62            1 2.526            0 3.26  -0.1             0.000
#> 63            1 2.526            0 3.26   0.1             0.000
#> 64            1 2.526            0 3.26   0.3             0.000
#> 65            1 1.504            0 3.33  -0.3             0.000
#> 66            1 1.504            0 3.33  -0.1             0.000
#> 67            1 1.504            0 3.33   0.1             0.000
#> 68            1 1.504            0 3.33   0.3             0.000
#> 69            1 3.323            0 3.43  -0.3             0.000
#> 70            1 3.323            0 3.43  -0.1             0.000
#> 71            1 3.323            0 3.43   0.1             0.000
#> 72            1 3.323            0 3.43   0.3             0.000
#> 73            1 1.504            0 3.47  -0.3             0.000
#> 74            1 1.504            0 3.47  -0.1             0.000
#> 75            1 1.504            0 3.47   0.1             0.000
#> 76            1 1.504            0 3.47   0.3             0.000
#> 77            1 1.609            0 3.04  -0.3             0.000
#> 78            1 1.609            0 3.04  -0.1             0.000
#> 79            1 1.609            0 3.04   0.1             0.000
#> 80            1 1.609            0 3.04   0.3             0.000
#> 81            1 1.099            0 3.37  -0.3             0.000
#> 82            1 1.099            0 3.37  -0.1             0.000
#> 83            1 1.099            0 3.37   0.1             0.000
#> 84            1 1.099            0 3.37   0.3             0.000
#> 85            1 0.811            0 3.04  -0.3             0.000
#> 86            1 0.811            0 3.04  -0.1             0.000
#> 87            1 0.811            0 3.04   0.1             0.000
#> 88            1 0.811            0 3.04   0.3             0.000
#> 89            1 1.447            0 3.47  -0.3             0.000
#> 90            1 1.447            0 3.47  -0.1             0.000
#> 91            1 1.447            0 3.47   0.1             0.000
#> 92            1 1.447            0 3.47   0.3             0.000
#> 93            1 1.946            0 3.22  -0.3             0.000
#> 94            1 1.946            0 3.22  -0.1             0.000
#> 95            1 1.946            0 3.22   0.1             0.000
#> 96            1 1.946            0 3.22   0.3             0.000
#> 97            1 2.621            0 3.40  -0.3             0.000
#> 98            1 2.621            0 3.40  -0.1             0.000
#> 99            1 2.621            0 3.40   0.1             0.000
#> 100           1 2.621            0 3.40   0.3             0.000
#> 101           1 0.811            0 3.69  -0.3             0.000
#> 102           1 0.811            0 3.69  -0.1             0.000
#> 103           1 0.811            0 3.69   0.1             0.000
#> 104           1 0.811            0 3.69   0.3             0.000
#> 105           1 0.916            0 2.94  -0.3             0.000
#> 106           1 0.916            0 2.94  -0.1             0.000
#> 107           1 0.916            0 2.94   0.1             0.000
#> 108           1 0.916            0 2.94   0.3             0.000
#> 109           1 2.464            0 3.09  -0.3             0.000
#> 110           1 2.464            0 3.09  -0.1             0.000
#> 111           1 2.464            0 3.09   0.1             0.000
#> 112           1 2.464            0 3.09   0.3             0.000
#> 113           1 2.944            1 2.89  -0.3             2.944
#> 114           1 2.944            1 2.89  -0.1             2.944
#> 115           1 2.944            1 2.89   0.1             2.944
#> 116           1 2.944            1 2.89   0.3             2.944
#> 117           1 2.251            1 3.47  -0.3             2.251
#> 118           1 2.251            1 3.47  -0.1             2.251
#> 119           1 2.251            1 3.47   0.1             2.251
#> 120           1 2.251            1 3.47   0.3             2.251
#> 121           1 1.558            1 3.00  -0.3             1.558
#> 122           1 1.558            1 3.00  -0.1             1.558
#> 123           1 1.558            1 3.00   0.1             1.558
#> 124           1 1.558            1 3.00   0.3             1.558
#> 125           1 0.916            1 3.40  -0.3             0.916
#> 126           1 0.916            1 3.40  -0.1             0.916
#> 127           1 0.916            1 3.40   0.1             0.916
#> 128           1 0.916            1 3.40   0.3             0.916
#> 129           1 1.558            1 2.89  -0.3             1.558
#> 130           1 1.558            1 2.89  -0.1             1.558
#> 131           1 1.558            1 2.89   0.1             1.558
#> 132           1 1.558            1 2.89   0.3             1.558
#> 133           1 1.792            1 3.18  -0.3             1.792
#> 134           1 1.792            1 3.18  -0.1             1.792
#> 135           1 1.792            1 3.18   0.1             1.792
#> 136           1 1.792            1 3.18   0.3             1.792
#> 137           1 2.048            1 3.40  -0.3             2.048
#> 138           1 2.048            1 3.40  -0.1             2.048
#> 139           1 2.048            1 3.40   0.1             2.048
#> 140           1 2.048            1 3.40   0.3             2.048
#> 141           1 1.253            1 3.56  -0.3             1.253
#> 142           1 1.253            1 3.56  -0.1             1.253
#> 143           1 1.253            1 3.56   0.1             1.253
#> 144           1 1.253            1 3.56   0.3             1.253
#> 145           1 1.012            1 3.30  -0.3             1.012
#> 146           1 1.012            1 3.30  -0.1             1.012
#> 147           1 1.012            1 3.30   0.1             1.012
#> 148           1 1.012            1 3.30   0.3             1.012
#> 149           1 2.818            1 3.00  -0.3             2.818
#> 150           1 2.818            1 3.00  -0.1             2.818
#> 151           1 2.818            1 3.00   0.1             2.818
#> 152           1 2.818            1 3.00   0.3             2.818
#> 153           1 2.327            1 3.09  -0.3             2.327
#> 154           1 2.327            1 3.09  -0.1             2.327
#> 155           1 2.327            1 3.09   0.1             2.327
#> 156           1 2.327            1 3.09   0.3             2.327
#> 157           1 0.560            1 3.33  -0.3             0.560
#> 158           1 0.560            1 3.33  -0.1             0.560
#> 159           1 0.560            1 3.33   0.1             0.560
#> 160           1 0.560            1 3.33   0.3             0.560
#> 161           1 1.705            1 3.14  -0.3             1.705
#> 162           1 1.705            1 3.14  -0.1             1.705
#> 163           1 1.705            1 3.14   0.1             1.705
#> 164           1 1.705            1 3.14   0.3             1.705
#> 165           1 1.179            1 3.69  -0.3             1.179
#> 166           1 1.179            1 3.69  -0.1             1.179
#> 167           1 1.179            1 3.69   0.1             1.179
#> 168           1 1.179            1 3.69   0.3             1.179
#> 169           1 2.442            1 3.50  -0.3             2.442
#> 170           1 2.442            1 3.50  -0.1             2.442
#> 171           1 2.442            1 3.50   0.1             2.442
#> 172           1 2.442            1 3.50   0.3             2.442
#> 173           1 2.197            1 3.04  -0.3             2.197
#> 174           1 2.197            1 3.04  -0.1             2.197
#> 175           1 2.197            1 3.04   0.1             2.197
#> 176           1 2.197            1 3.04   0.3             2.197
#> 177           1 2.251            1 3.56  -0.3             2.251
#> 178           1 2.251            1 3.56  -0.1             2.251
#> 179           1 2.251            1 3.56   0.1             2.251
#> 180           1 2.251            1 3.56   0.3             2.251
#> 181           1 0.560            1 3.22  -0.3             0.560
#> 182           1 0.560            1 3.22  -0.1             0.560
#> 183           1 0.560            1 3.22   0.1             0.560
#> 184           1 0.560            1 3.22   0.3             0.560
#> 185           1 2.197            1 3.26  -0.3             2.197
#> 186           1 2.197            1 3.26  -0.1             2.197
#> 187           1 2.197            1 3.26   0.1             2.197
#> 188           1 2.197            1 3.26   0.3             2.197
#> 189           1 1.012            1 3.22  -0.3             1.012
#> 190           1 1.012            1 3.22  -0.1             1.012
#> 191           1 1.012            1 3.22   0.1             1.012
#> 192           1 1.012            1 3.22   0.3             1.012
#> 193           1 3.631            1 3.09  -0.3             3.631
#> 194           1 3.631            1 3.09  -0.1             3.631
#> 195           1 3.631            1 3.09   0.1             3.631
#> 196           1 3.631            1 3.09   0.3             3.631
#> 197           1 1.705            1 3.47  -0.3             1.705
#> 198           1 1.705            1 3.47  -0.1             1.705
#> 199           1 1.705            1 3.47   0.1             1.705
#> 200           1 1.705            1 3.47   0.3             1.705
#> 201           1 2.327            1 3.22  -0.3             2.327
#> 202           1 2.327            1 3.22  -0.1             2.327
#> 203           1 2.327            1 3.22   0.1             2.327
#> 204           1 2.327            1 3.22   0.3             2.327
#> 205           1 2.079            1 3.56  -0.3             2.079
#> 206           1 2.079            1 3.56  -0.1             2.079
#> 207           1 2.079            1 3.56   0.1             2.079
#> 208           1 2.079            1 3.56   0.3             2.079
#> 209           1 2.639            1 3.04  -0.3             2.639
#> 210           1 2.639            1 3.04  -0.1             2.639
#> 211           1 2.639            1 3.04   0.1             2.639
#> 212           1 2.639            1 3.04   0.3             2.639
#> 213           1 1.792            1 3.71  -0.3             1.792
#> 214           1 1.792            1 3.71  -0.1             1.792
#> 215           1 1.792            1 3.71   0.1             1.792
#> 216           1 1.792            1 3.71   0.3             1.792
#> 217           1 1.386            1 3.47  -0.3             1.386
#> 218           1 1.386            1 3.47  -0.1             1.386
#> 219           1 1.386            1 3.47   0.1             1.386
#> 220           1 1.386            1 3.47   0.3             1.386
#> 221           1 1.705            1 3.26  -0.3             1.705
#> 222           1 1.705            1 3.26  -0.1             1.705
#> 223           1 1.705            1 3.26   0.1             1.705
#> 224           1 1.705            1 3.26   0.3             1.705
#> 225           1 1.833            1 3.04  -0.3             1.833
#> 226           1 1.833            1 3.04  -0.1             1.833
#> 227           1 1.833            1 3.04   0.1             1.833
#> 228           1 1.833            1 3.04   0.3             1.833
#> 229           1 1.179            1 3.58  -0.3             1.179
#> 230           1 1.179            1 3.58  -0.1             1.179
#> 231           1 1.179            1 3.58   0.1             1.179
#> 232           1 1.179            1 3.58   0.3             1.179
#> 233           1 1.099            1 3.61  -0.3             1.099
#> 234           1 1.099            1 3.61  -0.1             1.099
#> 235           1 1.099            1 3.61   0.1             1.099
#> 236           1 1.099            1 3.61   0.3             1.099
#> attr(,"assign")
#> [1] 0 1 2 3 4 5
#> attr(,"contrasts")
#> attr(,"contrasts")$trt
#> [1] "contr.treatment"
#> 
#> ---end{model.matrix}--------------
#> 
#> nobs:
#> -----
#> [1] 236
#> ---end{nobs}--------------
#> 
#> predict:
#> -----
#>   [1]  1.2758  1.2222  1.1685  1.1148  1.2603  1.2067  1.1530  1.0993  0.6382
#>  [10]  0.5845  0.5308  0.4771  1.0649  1.0112  0.9576  0.9039  2.6981  2.6445
#>  [19]  2.5908  2.5371  2.0383  1.9847  1.9310  1.8773  1.3528  1.2991  1.2454
#>  [28]  1.1917  2.7930  2.7393  2.6856  2.6319  2.0117  1.9580  1.9043  1.8507
#>  [37]  1.1434  1.0898  1.0361  0.9824  2.7201  2.6664  2.6127  2.5591  2.1263
#>  [46]  2.0727  2.0190  1.9653  1.5702  1.5165  1.4629  1.4092  2.5313  2.4776
#>  [55]  2.4239  2.3702  3.0214  2.9677  2.9140  2.8603  2.5316  2.4779  2.4242
#>  [64]  2.3706  1.6632  1.6095  1.5558  1.5022  3.3200  3.2663  3.2126  3.1589
#>  [73]  1.7263  1.6726  1.6190  1.5653  1.6204  1.5667  1.5130  1.4593  1.3213
#>  [82]  1.2676  1.2139  1.1602  0.9143  0.8606  0.8069  0.7532  1.6758  1.6221
#>  [91]  1.5684  1.5147  2.0003  1.9467  1.8930  1.8393  2.6835  2.6298  2.5762
#> [100]  2.5225  1.2189  1.1652  1.1115  1.0578  0.9601  0.9065  0.8528  0.7991
#> [109]  2.3979  2.3442  2.2906  2.2369  2.7898  2.7361  2.6825  2.6288  2.2158
#> [118]  2.1621  2.1084  2.0547  1.1476  1.0939  1.0402  0.9865  0.5558  0.5021
#> [127]  0.4484  0.3947  1.0978  1.0441  0.9904  0.9367  1.5189  1.4652  1.4115
#> [136]  1.3578  1.9368  1.8831  1.8294  1.7757  1.0394  0.9857  0.9320  0.8783
#> [145]  0.6223  0.5686  0.5150  0.4613  2.6858  2.6321  2.5784  2.5247  2.1314
#> [154]  2.0777  2.0240  1.9703  0.0829  0.0292 -0.0244 -0.0781  1.3926  1.3389
#> [163]  1.2852  1.2315  1.0120  0.9583  0.9047  0.8510  2.4635  2.4098  2.3561
#> [172]  2.3025  1.9507  1.8970  1.8433  1.7896  2.2581  2.2044  2.1508  2.0971
#> [181]  0.0343 -0.0194 -0.0731 -0.1268  2.0516  1.9979  1.9443  1.8906  0.5860
#> [190]  0.5323  0.4786  0.4249  3.7227  3.6690  3.6153  3.5616  1.5487  1.4950
#> [199]  1.4413  1.3876  2.1918  2.1381  2.0845  2.0308  2.0484  1.9947  1.9410
#> [208]  1.8873  2.4900  2.4363  2.3826  2.3289  1.7720  1.7183  1.6647  1.6110
#> [217]  1.1600  1.1063  1.0526  0.9989  1.4505  1.3968  1.3432  1.2895  1.5056
#> [226]  1.4519  1.3982  1.3445  0.9622  0.9085  0.8549  0.8012  0.8775  0.8238
#> [235]  0.7701  0.7164
#> ---end{predict}--------------
#> 
#> print:
#> -----
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>       AIC       BIC    logLik -2*log(L)  df.resid 
#>      1269      1304      -625      1249       226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#>       AIC       BIC    logLik -2*log(L)  df.resid 
#>      1269      1304      -625      1249       226 
#> Random-effects (co)variances:
#> 
#> Conditional model:
#>  Groups  Name        Std.Dev. Corr  
#>  subject (Intercept) 0.4660         
#>          Visit       0.0073   -1.00 
#> 
#> Number of obs: 236 / Conditional model: subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Fixed Effects:
#> 
#> Conditional model:
#>       (Intercept)               Base       trtprogabide                Age  
#>            -1.322              0.884             -0.928              0.473  
#>             Visit  Base:trtprogabide  
#>            -0.268              0.336  
#> ---end{print}--------------
#> 
#> ranef:
#> -----
#> $subject
#>    (Intercept)     Visit
#> 1      0.03606 -5.64e-04
#> 2      0.04787 -7.49e-04
#> 3      0.28508 -4.46e-03
#> 4      0.12652 -1.98e-03
#> 5      0.01070 -1.67e-04
#> 6     -0.18220  2.85e-03
#> 7     -0.11940  1.87e-03
#> 8      0.34778 -5.44e-03
#> 9     -0.16654  2.61e-03
#> 10     0.79451 -1.24e-02
#> 11     0.13058 -2.04e-03
#> 12    -0.03044  4.76e-04
#> 13    -0.07363  1.15e-03
#> 14    -0.07212  1.13e-03
#> 15    -0.20966  3.28e-03
#> 16    -0.75388  1.18e-02
#> 17    -0.65667  1.03e-02
#> 18     0.15399 -2.41e-03
#> 19    -0.22234  3.48e-03
#> 20    -0.10112  1.58e-03
#> 21     0.00820 -1.28e-04
#> 22     0.28005 -4.38e-03
#> 23    -0.27601  4.32e-03
#> 24     0.06948 -1.09e-03
#> 25     0.83654 -1.31e-02
#> 26    -0.40209  6.29e-03
#> 27     0.02199 -3.44e-04
#> 28     0.21407 -3.35e-03
#> 29    -0.28630  4.48e-03
#> 30    -0.14681  2.30e-03
#> 31    -0.28914  4.53e-03
#> 32     0.45572 -7.13e-03
#> 33     0.38701 -6.06e-03
#> 34    -0.27693  4.33e-03
#> 35     0.87528 -1.37e-02
#> 36     0.46665 -7.30e-03
#> 37     0.22843 -3.58e-03
#> 38    -0.60183  9.42e-03
#> 39    -0.05732  8.97e-04
#> 40    -0.00491  7.69e-05
#> 41    -0.50078  7.84e-03
#> 42     0.10417 -1.63e-03
#> 43     0.33673 -5.27e-03
#> 44    -0.00157  2.45e-05
#> 45     0.06814 -1.07e-03
#> 46     0.32149 -5.03e-03
#> 47     0.08453 -1.32e-03
#> 48    -0.33261  5.21e-03
#> 49     0.58012 -9.08e-03
#> 50    -0.19400  3.04e-03
#> 51    -0.18142  2.84e-03
#> 52    -0.66934  1.05e-02
#> 53     0.37292 -5.84e-03
#> 54    -0.34984  5.48e-03
#> 55     0.16421 -2.57e-03
#> 56     0.95361 -1.49e-02
#> 57    -0.56938  8.91e-03
#> 58    -0.81392  1.27e-02
#> 59     0.07356 -1.15e-03
#> 
#> ---end{ranef}--------------
#> 
#> recover_data:
#> -----
#>      Base       trt  Age Visit
#> 1   1.012   placebo 3.43  -0.3
#> 2   1.012   placebo 3.43  -0.1
#> 3   1.012   placebo 3.43   0.1
#> 4   1.012   placebo 3.43   0.3
#> 5   1.012   placebo 3.40  -0.3
#> 6   1.012   placebo 3.40  -0.1
#> 7   1.012   placebo 3.40   0.1
#> 8   1.012   placebo 3.40   0.3
#> 9   0.405   placebo 3.22  -0.3
#> 10  0.405   placebo 3.22  -0.1
#> 11  0.405   placebo 3.22   0.1
#> 12  0.405   placebo 3.22   0.3
#> 13  0.693   placebo 3.58  -0.3
#> 14  0.693   placebo 3.58  -0.1
#> 15  0.693   placebo 3.58   0.1
#> 16  0.693   placebo 3.58   0.3
#> 17  2.803   placebo 3.09  -0.3
#> 18  2.803   placebo 3.09  -0.1
#> 19  2.803   placebo 3.09   0.1
#> 20  2.803   placebo 3.09   0.3
#> 21  1.910   placebo 3.37  -0.3
#> 22  1.910   placebo 3.37  -0.1
#> 23  1.910   placebo 3.37   0.1
#> 24  1.910   placebo 3.37   0.3
#> 25  1.099   placebo 3.43  -0.3
#> 26  1.099   placebo 3.43  -0.1
#> 27  1.099   placebo 3.43   0.1
#> 28  1.099   placebo 3.43   0.3
#> 29  2.565   placebo 3.74  -0.3
#> 30  2.565   placebo 3.74  -0.1
#> 31  2.565   placebo 3.74   0.1
#> 32  2.565   placebo 3.74   0.3
#> 33  1.749   placebo 3.61  -0.3
#> 34  1.749   placebo 3.61  -0.1
#> 35  1.749   placebo 3.61   0.1
#> 36  1.749   placebo 3.61   0.3
#> 37  0.916   placebo 3.33  -0.3
#> 38  0.916   placebo 3.33  -0.1
#> 39  0.916   placebo 3.33   0.1
#> 40  0.916   placebo 3.33   0.3
#> 41  2.565   placebo 3.58  -0.3
#> 42  2.565   placebo 3.58  -0.1
#> 43  2.565   placebo 3.58   0.1
#> 44  2.565   placebo 3.58   0.3
#> 45  2.110   placebo 3.18  -0.3
#> 46  2.110   placebo 3.18  -0.1
#> 47  2.110   placebo 3.18   0.1
#> 48  2.110   placebo 3.18   0.3
#> 49  1.504   placebo 3.14  -0.3
#> 50  1.504   placebo 3.14  -0.1
#> 51  1.504   placebo 3.14   0.1
#> 52  1.504   placebo 3.14   0.3
#> 53  2.351   placebo 3.58  -0.3
#> 54  2.351   placebo 3.58  -0.1
#> 55  2.351   placebo 3.58   0.1
#> 56  2.351   placebo 3.58   0.3
#> 57  3.080   placebo 3.26  -0.3
#> 58  3.080   placebo 3.26  -0.1
#> 59  3.080   placebo 3.26   0.1
#> 60  3.080   placebo 3.26   0.3
#> 61  2.526   placebo 3.26  -0.3
#> 62  2.526   placebo 3.26  -0.1
#> 63  2.526   placebo 3.26   0.1
#> 64  2.526   placebo 3.26   0.3
#> 65  1.504   placebo 3.33  -0.3
#> 66  1.504   placebo 3.33  -0.1
#> 67  1.504   placebo 3.33   0.1
#> 68  1.504   placebo 3.33   0.3
#> 69  3.323   placebo 3.43  -0.3
#> 70  3.323   placebo 3.43  -0.1
#> 71  3.323   placebo 3.43   0.1
#> 72  3.323   placebo 3.43   0.3
#> 73  1.504   placebo 3.47  -0.3
#> 74  1.504   placebo 3.47  -0.1
#> 75  1.504   placebo 3.47   0.1
#> 76  1.504   placebo 3.47   0.3
#> 77  1.609   placebo 3.04  -0.3
#> 78  1.609   placebo 3.04  -0.1
#> 79  1.609   placebo 3.04   0.1
#> 80  1.609   placebo 3.04   0.3
#> 81  1.099   placebo 3.37  -0.3
#> 82  1.099   placebo 3.37  -0.1
#> 83  1.099   placebo 3.37   0.1
#> 84  1.099   placebo 3.37   0.3
#> 85  0.811   placebo 3.04  -0.3
#> 86  0.811   placebo 3.04  -0.1
#> 87  0.811   placebo 3.04   0.1
#> 88  0.811   placebo 3.04   0.3
#> 89  1.447   placebo 3.47  -0.3
#> 90  1.447   placebo 3.47  -0.1
#> 91  1.447   placebo 3.47   0.1
#> 92  1.447   placebo 3.47   0.3
#> 93  1.946   placebo 3.22  -0.3
#> 94  1.946   placebo 3.22  -0.1
#> 95  1.946   placebo 3.22   0.1
#> 96  1.946   placebo 3.22   0.3
#> 97  2.621   placebo 3.40  -0.3
#> 98  2.621   placebo 3.40  -0.1
#> 99  2.621   placebo 3.40   0.1
#> 100 2.621   placebo 3.40   0.3
#> 101 0.811   placebo 3.69  -0.3
#> 102 0.811   placebo 3.69  -0.1
#> 103 0.811   placebo 3.69   0.1
#> 104 0.811   placebo 3.69   0.3
#> 105 0.916   placebo 2.94  -0.3
#> 106 0.916   placebo 2.94  -0.1
#> 107 0.916   placebo 2.94   0.1
#> 108 0.916   placebo 2.94   0.3
#> 109 2.464   placebo 3.09  -0.3
#> 110 2.464   placebo 3.09  -0.1
#> 111 2.464   placebo 3.09   0.1
#> 112 2.464   placebo 3.09   0.3
#> 113 2.944 progabide 2.89  -0.3
#> 114 2.944 progabide 2.89  -0.1
#> 115 2.944 progabide 2.89   0.1
#> 116 2.944 progabide 2.89   0.3
#> 117 2.251 progabide 3.47  -0.3
#> 118 2.251 progabide 3.47  -0.1
#> 119 2.251 progabide 3.47   0.1
#> 120 2.251 progabide 3.47   0.3
#> 121 1.558 progabide 3.00  -0.3
#> 122 1.558 progabide 3.00  -0.1
#> 123 1.558 progabide 3.00   0.1
#> 124 1.558 progabide 3.00   0.3
#> 125 0.916 progabide 3.40  -0.3
#> 126 0.916 progabide 3.40  -0.1
#> 127 0.916 progabide 3.40   0.1
#> 128 0.916 progabide 3.40   0.3
#> 129 1.558 progabide 2.89  -0.3
#> 130 1.558 progabide 2.89  -0.1
#> 131 1.558 progabide 2.89   0.1
#> 132 1.558 progabide 2.89   0.3
#> 133 1.792 progabide 3.18  -0.3
#> 134 1.792 progabide 3.18  -0.1
#> 135 1.792 progabide 3.18   0.1
#> 136 1.792 progabide 3.18   0.3
#> 137 2.048 progabide 3.40  -0.3
#> 138 2.048 progabide 3.40  -0.1
#> 139 2.048 progabide 3.40   0.1
#> 140 2.048 progabide 3.40   0.3
#> 141 1.253 progabide 3.56  -0.3
#> 142 1.253 progabide 3.56  -0.1
#> 143 1.253 progabide 3.56   0.1
#> 144 1.253 progabide 3.56   0.3
#> 145 1.012 progabide 3.30  -0.3
#> 146 1.012 progabide 3.30  -0.1
#> 147 1.012 progabide 3.30   0.1
#> 148 1.012 progabide 3.30   0.3
#> 149 2.818 progabide 3.00  -0.3
#> 150 2.818 progabide 3.00  -0.1
#> 151 2.818 progabide 3.00   0.1
#> 152 2.818 progabide 3.00   0.3
#> 153 2.327 progabide 3.09  -0.3
#> 154 2.327 progabide 3.09  -0.1
#> 155 2.327 progabide 3.09   0.1
#> 156 2.327 progabide 3.09   0.3
#> 157 0.560 progabide 3.33  -0.3
#> 158 0.560 progabide 3.33  -0.1
#> 159 0.560 progabide 3.33   0.1
#> 160 0.560 progabide 3.33   0.3
#> 161 1.705 progabide 3.14  -0.3
#> 162 1.705 progabide 3.14  -0.1
#> 163 1.705 progabide 3.14   0.1
#> 164 1.705 progabide 3.14   0.3
#> 165 1.179 progabide 3.69  -0.3
#> 166 1.179 progabide 3.69  -0.1
#> 167 1.179 progabide 3.69   0.1
#> 168 1.179 progabide 3.69   0.3
#> 169 2.442 progabide 3.50  -0.3
#> 170 2.442 progabide 3.50  -0.1
#> 171 2.442 progabide 3.50   0.1
#> 172 2.442 progabide 3.50   0.3
#> 173 2.197 progabide 3.04  -0.3
#> 174 2.197 progabide 3.04  -0.1
#> 175 2.197 progabide 3.04   0.1
#> 176 2.197 progabide 3.04   0.3
#> 177 2.251 progabide 3.56  -0.3
#> 178 2.251 progabide 3.56  -0.1
#> 179 2.251 progabide 3.56   0.1
#> 180 2.251 progabide 3.56   0.3
#> 181 0.560 progabide 3.22  -0.3
#> 182 0.560 progabide 3.22  -0.1
#> 183 0.560 progabide 3.22   0.1
#> 184 0.560 progabide 3.22   0.3
#> 185 2.197 progabide 3.26  -0.3
#> 186 2.197 progabide 3.26  -0.1
#> 187 2.197 progabide 3.26   0.1
#> 188 2.197 progabide 3.26   0.3
#> 189 1.012 progabide 3.22  -0.3
#> 190 1.012 progabide 3.22  -0.1
#> 191 1.012 progabide 3.22   0.1
#> 192 1.012 progabide 3.22   0.3
#> 193 3.631 progabide 3.09  -0.3
#> 194 3.631 progabide 3.09  -0.1
#> 195 3.631 progabide 3.09   0.1
#> 196 3.631 progabide 3.09   0.3
#> 197 1.705 progabide 3.47  -0.3
#> 198 1.705 progabide 3.47  -0.1
#> 199 1.705 progabide 3.47   0.1
#> 200 1.705 progabide 3.47   0.3
#> 201 2.327 progabide 3.22  -0.3
#> 202 2.327 progabide 3.22  -0.1
#> 203 2.327 progabide 3.22   0.1
#> 204 2.327 progabide 3.22   0.3
#> 205 2.079 progabide 3.56  -0.3
#> 206 2.079 progabide 3.56  -0.1
#> 207 2.079 progabide 3.56   0.1
#> 208 2.079 progabide 3.56   0.3
#> 209 2.639 progabide 3.04  -0.3
#> 210 2.639 progabide 3.04  -0.1
#> 211 2.639 progabide 3.04   0.1
#> 212 2.639 progabide 3.04   0.3
#> 213 1.792 progabide 3.71  -0.3
#> 214 1.792 progabide 3.71  -0.1
#> 215 1.792 progabide 3.71   0.1
#> 216 1.792 progabide 3.71   0.3
#> 217 1.386 progabide 3.47  -0.3
#> 218 1.386 progabide 3.47  -0.1
#> 219 1.386 progabide 3.47   0.1
#> 220 1.386 progabide 3.47   0.3
#> 221 1.705 progabide 3.26  -0.3
#> 222 1.705 progabide 3.26  -0.1
#> 223 1.705 progabide 3.26   0.1
#> 224 1.705 progabide 3.26   0.3
#> 225 1.833 progabide 3.04  -0.3
#> 226 1.833 progabide 3.04  -0.1
#> 227 1.833 progabide 3.04   0.1
#> 228 1.833 progabide 3.04   0.3
#> 229 1.179 progabide 3.58  -0.3
#> 230 1.179 progabide 3.58  -0.1
#> 231 1.179 progabide 3.58   0.1
#> 232 1.179 progabide 3.58   0.3
#> 233 1.099 progabide 3.61  -0.3
#> 234 1.099 progabide 3.61  -0.1
#> 235 1.099 progabide 3.61   0.1
#> 236 1.099 progabide 3.61   0.3
#> ---end{recover_data}--------------
#> 
#> refit:
#> -----
#> ** Error: argument "newresp" is missing, with no default 
#> ---end{refit}--------------
#> 
#> residuals:
#> -----
#>         1         2         3         4         5         6         7         8 
#>   1.41830  -0.39449  -0.21706  -0.04891  -0.52661   1.65772  -0.16759  -0.00202 
#>         9        10        11        12        13        14        15        16 
#>   0.10700   2.20594  -1.70028   3.38859   1.09939   1.25100  -1.60531   1.53087 
#>        17        18        19        20        21        22        23        24 
#>  -7.85210   3.92421  -4.34007   8.35720  -2.67787  -5.27656   1.10378   0.46424 
#>        25        26        27        28        29        30        31        32 
#>   2.13183   0.33402  -3.47436  -1.29276  23.67040   4.52393   6.33285  -1.90052 
#>        33        34        35        36        37        38        39        40 
#>  -2.47613  -1.08536  -0.71502  -1.36403  10.86244  10.02644   3.18186  -2.67084 
#>        41        42        43        44        45        46        47        48 
#>  10.81797  -2.38848  -7.63641   9.07635   3.61590  -1.94587   0.46945  -3.13694 
#>        49        50        51        52        53        54        55        56 
#>  -0.80774  -0.55644   1.68172  -2.09257  -5.56926  -2.91227   0.71037   3.30046 
#>        57        58        59        60        61        62        63        64 
#>  -4.51983   4.55271  -8.43080  -8.46744  -1.57366 -11.91644 -11.29359  -5.70328 
#>        65        66        67        68        69        70        71        72 
#>  -5.27623  -5.00045  -1.73908  -1.49137   9.34063   2.78635   3.15651   5.45505 
#>        73        74        75        76        77        78        79        80 
#>  -2.62000  -0.32625  -3.04785   0.21599  -2.05507  -4.79085   1.45956   2.69689 
#>        81        82        83        84        85        86        87        88 
#>  -0.74812   0.44779  -0.36654   0.80942   0.50500   1.63541   0.75900   1.87614 
#>        89        90        91        92        93        94        95        96 
#>  -3.34300  -2.06373  -1.79905   0.45179   0.60840   4.99475  -4.63909   1.70793 
#>        97        98        99       100       101       102       103       104 
#>   3.36336  10.12840  62.85345  12.54061  -1.38339  -2.20654  -1.03894  -1.88010 
#>       105       106       107       108       109       110       111       112 
#>   0.38792  -1.47555   1.65384  -0.22353   1.99970   4.57467   3.11959   2.63603 
#>       113       114       115       116       117       118       119       120 
#>  -5.27815  -1.42731  -5.62094  -5.85672  -1.16843  -1.68921   0.76497  -3.80460 
#>       121       122       123       124       125       126       127       128 
#>  -3.15051   1.01416   0.17023  -2.68186   1.25666   4.34778  -0.56586   1.51599 
#>       129       130       131       132       133       134       135       136 
#>  -0.99745   3.15923   4.30771   1.44843  -0.56715  -1.32843  -3.10219  -0.88777 
#>       137       138       139       140       141       142       143       144 
#>  15.06380  10.42635  12.76995  10.09559   2.17260   1.32039   4.46045   1.59319 
#>       145       146       147       148       149       150       151       152 
#>   0.13673   2.23412  -1.67358   2.41390 -11.66974  -6.90297  -6.17628  -5.48757 
#>       153       154       155       156       157       158       159       160 
#>  -4.42662  10.01383  -5.56874  -2.17313   0.91356  -0.02967   0.02413  -0.92487 
#>       161       162       163       164       165       166       167       168 
#>  -4.02518  -1.81479   0.38461  -3.42642   2.24884   1.39264  -2.47108   0.65808 
#>       169       170       171       172       173       174       175       176 
#>  -0.74594   2.86801  14.44986   5.00131   2.96662  -1.66575  -3.31734   2.01286 
#>       177       178       179       180       181       182       183       184 
#>   9.43485  -2.06519  -2.59136  -1.14230  -0.03487   0.01922   1.07049   2.11907 
#>       185       186       187       188       189       190       191       192 
#>  -1.78052   2.62616   1.01158   1.37686   0.20330  -0.70279  -1.61379  -1.52944 
#>       193       194       195       196       197       198       199       200 
#>  60.62588  25.78846  34.83800  27.78042  -0.70523  -1.45929  -2.22621  -0.00531 
#>       201       202       203       204       205       206       207       208 
#>  -0.95151  -2.48362  -3.04019  -0.61994  -6.75526  -4.34990  -5.96573  -1.60164 
#>       209       210       211       212       213       214       215       216 
#>   5.93930  -0.43030  17.16714   2.73337   0.11722  -2.57529  -1.28388  -5.00770 
#>       217       218       219       220       221       222       223       224 
#>  -0.18987   1.97686   1.13488   0.28463  -3.26535  18.95760  15.16889   4.36914 
#>       225       226       227       228       229       230       231       232 
#>  -2.50684  -1.27127  -4.04802  -2.83643  -2.61750  -2.48068  -2.35102  -2.22814 
#>       233       234       235       236 
#>  -1.40482   1.72088   0.84001  -0.04709 
#> ---end{residuals}--------------
#> 
#> sandwich:
#> -----
#>                   (Intercept)     Base trtprogabide      Age    Visit
#> (Intercept)            1.1734 -0.01503       0.0205 -0.34126  0.03419
#> Base                  -0.0150  0.01175       0.0206 -0.00164  0.00537
#> trtprogabide           0.0205  0.02057       0.1536 -0.01909  0.02331
#> Age                   -0.3413 -0.00164      -0.0191  0.10309 -0.01344
#> Visit                  0.0342  0.00537       0.0233 -0.01344  0.02660
#> Base:trtprogabide     -0.0292 -0.01191      -0.0719  0.01489 -0.01206
#>                   Base:trtprogabide
#> (Intercept)                 -0.0292
#> Base                        -0.0119
#> trtprogabide                -0.0719
#> Age                          0.0149
#> Visit                       -0.0121
#> Base:trtprogabide            0.0393
#> ---end{sandwich}--------------
#> 
#> sigma:
#> -----
#> [1] 7.46
#> ---end{sigma}--------------
#> 
#> simulate:
#> -----
#>     sim_1
#> 1       3
#> 2       2
#> 3       1
#> 4       6
#> 5       1
#> 6       3
#> 7       8
#> 8       0
#> 9       4
#> 10      1
#> 11     10
#> 12      6
#> 13      3
#> 14      0
#> 15      2
#> 16      1
#> 17     11
#> 18      9
#> 19     14
#> 20      5
#> 21     12
#> 22      0
#> 23      4
#> 24     11
#> 25      5
#> 26      9
#> 27      4
#> 28      4
#> 29      4
#> 30      2
#> 31     13
#> 32      7
#> 33     29
#> 34     13
#> 35     15
#> 36     32
#> 37      3
#> 38      3
#> 39      2
#> 40      2
#> 41      6
#> 42      7
#> 43     11
#> 44     17
#> 45     15
#> 46     10
#> 47      8
#> 48      6
#> 49      6
#> 50      4
#> 51      3
#> 52      4
#> 53     12
#> 54     13
#> 55     10
#> 56      9
#> 57     14
#> 58      9
#> 59     17
#> 60     10
#> 61      9
#> 62      7
#> 63     22
#> 64      3
#> 65      3
#> 66      5
#> 67      0
#> 68      3
#> 69     13
#> 70     16
#> 71     25
#> 72     14
#> 73      7
#> 74      8
#> 75      6
#> 76      6
#> 77      2
#> 78      3
#> 79      6
#> 80      4
#> 81      4
#> 82      5
#> 83      1
#> 84      1
#> 85      8
#> 86      6
#> 87      2
#> 88      8
#> 89      2
#> 90      7
#> 91      6
#> 92      8
#> 93     15
#> 94      1
#> 95      3
#> 96      7
#> 97      2
#> 98      7
#> 99      5
#> 100     0
#> 101     4
#> 102     1
#> 103     0
#> 104     2
#> 105     7
#> 106     4
#> 107     7
#> 108     5
#> 109    26
#> 110    21
#> 111    12
#> 112    12
#> 113     4
#> 114    11
#> 115     9
#> 116     4
#> 117    12
#> 118    11
#> 119    12
#> 120     9
#> 121     3
#> 122     7
#> 123     3
#> 124     0
#> 125     0
#> 126     1
#> 127     2
#> 128     0
#> 129     7
#> 130     8
#> 131     2
#> 132     3
#> 133     8
#> 134     6
#> 135     8
#> 136     4
#> 137     2
#> 138     6
#> 139     6
#> 140    10
#> 141     0
#> 142     6
#> 143     1
#> 144     3
#> 145     4
#> 146     2
#> 147    14
#> 148     1
#> 149    36
#> 150    22
#> 151    12
#> 152    22
#> 153     8
#> 154     6
#> 155     2
#> 156     3
#> 157     1
#> 158     0
#> 159     0
#> 160     0
#> 161     5
#> 162     4
#> 163     1
#> 164     4
#> 165     2
#> 166     2
#> 167     1
#> 168     1
#> 169    31
#> 170    32
#> 171    11
#> 172    28
#> 173     8
#> 174     7
#> 175     9
#> 176     9
#> 177     5
#> 178     7
#> 179     8
#> 180     6
#> 181     4
#> 182     2
#> 183     0
#> 184     1
#> 185    10
#> 186     5
#> 187     5
#> 188     8
#> 189     0
#> 190     1
#> 191     1
#> 192     1
#> 193    14
#> 194    32
#> 195    13
#> 196     9
#> 197     4
#> 198     6
#> 199     1
#> 200     5
#> 201     7
#> 202     7
#> 203    11
#> 204     5
#> 205     3
#> 206     9
#> 207     5
#> 208     5
#> 209     9
#> 210    13
#> 211    14
#> 212    16
#> 213     9
#> 214    16
#> 215    10
#> 216     3
#> 217     1
#> 218     4
#> 219     3
#> 220     1
#> 221     7
#> 222     5
#> 223     6
#> 224     3
#> 225    18
#> 226     3
#> 227    14
#> 228    14
#> 229     2
#> 230     4
#> 231     4
#> 232     4
#> 233     3
#> 234     6
#> 235     1
#> 236     1
#> ---end{simulate}--------------
#> 
#> summary:
#> -----
#>  Family: nbinom2  ( log )
#> Formula:          y ~ Base * trt + Age + Visit + (Visit | subject)
#> Data: epil2
#> 
#>       AIC       BIC    logLik -2*log(L)  df.resid 
#>      1269      1304      -625      1249       226 
#> 
#> Random effects:
#> 
#> Conditional model:
#>  Groups  Name        Variance Std.Dev. Corr  
#>  subject (Intercept) 2.17e-01 0.4660         
#>          Visit       5.33e-05 0.0073   -1.00 
#> Number of obs: 236, groups:  subject, 59
#> 
#> Dispersion parameter for nbinom2 family (): 7.46 
#> 
#> Conditional model:
#>                   Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)         -1.322      1.197   -1.10    0.269    
#> Base                 0.884      0.131    6.74  1.6e-11 ***
#> trtprogabide        -0.928      0.402   -2.31    0.021 *  
#> Age                  0.473      0.353    1.34    0.180    
#> Visit               -0.268      0.173   -1.55    0.121    
#> Base:trtprogabide    0.336      0.204    1.65    0.100 .  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> ---end{summary}--------------
#> 
#> terms:
#> -----
#> y ~ Base * trt + Age + Visit
#> attr(,"variables")
#> list(y, Base, trt, Age, Visit)
#> attr(,"factors")
#>       Base trt Age Visit Base:trt
#> y        0   0   0     0        0
#> Base     1   0   0     0        1
#> trt      0   1   0     0        1
#> Age      0   0   1     0        0
#> Visit    0   0   0     1        0
#> attr(,"term.labels")
#> [1] "Base"     "trt"      "Age"      "Visit"    "Base:trt"
#> attr(,"order")
#> [1] 1 1 1 1 2
#> attr(,"intercept")
#> [1] 1
#> attr(,"response")
#> [1] 1
#> attr(,".Environment")
#> <environment: 0x58fda83e04c8>
#> attr(,"predvars")
#> list(y, Base, trt, Age, Visit)
#> attr(,"dataClasses")
#>         y      Base       trt       Age     Visit 
#> "numeric" "numeric"  "factor" "numeric" "numeric" 
#> ---end{terms}--------------
#> 
#> vcov:
#> -----
#> Conditional model:
#>                   (Intercept)      Base trtprogabide      Age     Visit
#> (Intercept)           1.43367 -0.022869      0.03038 -0.41260  0.008343
#> Base                 -0.02287  0.017201      0.03157 -0.00242  0.000321
#> trtprogabide          0.03038  0.031572      0.16143 -0.02925  0.001870
#> Age                  -0.41260 -0.002417     -0.02925  0.12451 -0.002613
#> Visit                 0.00834  0.000321      0.00187 -0.00261  0.030015
#> Base:trtprogabide    -0.03366 -0.017596     -0.07637  0.01951 -0.001092
#>                   Base:trtprogabide
#> (Intercept)                -0.03366
#> Base                       -0.01760
#> trtprogabide               -0.07637
#> Age                         0.01951
#> Visit                      -0.00109
#> Base:trtprogabide           0.04172
#> 
#> ---end{vcov}--------------
#> 
#> vcovHC:
#> -----
#>                   (Intercept)     Base trtprogabide      Age    Visit
#> (Intercept)            1.1734 -0.01503       0.0205 -0.34126  0.03419
#> Base                  -0.0150  0.01175       0.0206 -0.00164  0.00537
#> trtprogabide           0.0205  0.02057       0.1536 -0.01909  0.02331
#> Age                   -0.3413 -0.00164      -0.0191  0.10309 -0.01344
#> Visit                  0.0342  0.00537       0.0233 -0.01344  0.02660
#> Base:trtprogabide     -0.0292 -0.01191      -0.0719  0.01489 -0.01206
#>                   Base:trtprogabide
#> (Intercept)                 -0.0292
#> Base                        -0.0119
#> trtprogabide                -0.0719
#> Age                          0.0149
#> Visit                       -0.0121
#> Base:trtprogabide            0.0393
#> ---end{vcovHC}--------------
#> 
#> weights:
#> -----
#> NULL
#> ---end{weights}--------------
#> 
options(op)
# }