This (simplified) method for a new S3 generic based on meatHC computes
the meat matrix for a fitted glmmTMB model, which is the cross-product of the cluster-wise
score vectors (empirical estimating functions) extracted by estfun.
meatHC(x, ...)
# Default S3 method
meatHC(x, ...)
# S3 method for class 'glmmTMB'
meatHC(x, ...)a glmmTMB object fitted with ML (REML is not supported).
additional arguments passed to estfun, in particular
full, cluster and rawnames arguments.
A square matrix where each element represents the cross-product of the score vectors for the parameters in the model. The rows and columns are named according to the parameter names.
This meat matrix is not scaled by the number of clusters.
m <- glmmTMB(count ~ mined + (1 | spp), data = Salamanders, family = nbinom1)
meatHC(m)
#> (Intercept) minedno
#> (Intercept) 18.45719 18.72652
#> minedno 18.72652 98.85238
meatHC(m, full = TRUE)
#> (Intercept) minedno disp~(Intercept) theta_1|spp.1
#> (Intercept) 18.457190 18.72652 8.767119 -8.880672
#> minedno 18.726521 98.85238 25.052327 -10.824946
#> disp~(Intercept) 8.767119 25.05233 104.156130 5.405059
#> theta_1|spp.1 -8.880672 -10.82495 5.405059 7.825683