na.replace.Rd
Missing entries in any given column of the matrix are replaced by the column means or the values in a supplied vector.
na.replace(x, m = rowSums(x, na.rm = TRUE))
A version of 'x' is returned with the missing values replaced.
This is a simple imputation scheme. This function is called by makeX
if the na.impute=TRUE
option is used, but of course can be used on
its own. If 'x' is sparse, the result is sparse, and the replacements are
done so as to maintain sparsity.
makeX
and glmnet
set.seed(101)
### Single data frame
X = matrix(rnorm(20), 10, 2)
X[3, 1] = NA
X[5, 2] = NA
X3 = sample(letters[1:3], 10, replace = TRUE)
X3[6] = NA
X4 = sample(LETTERS[1:3], 10, replace = TRUE)
X4[9] = NA
dfn = data.frame(X, X3, X4)
x = makeX(dfn)
m = rowSums(x, na.rm = TRUE)
na.replace(x, m)
#> X1 X2 X3a X3b X3c X4A X4B X4C
#> 1 -0.3260365 0.5264481 0.000000 1.0000000 0.000000 0.000000 0.000000 1.000000
#> 2 0.5524619 -0.7948444 0.000000 0.0000000 1.000000 0.000000 1.000000 0.000000
#> 3 2.2004116 1.4277555 1.000000 0.0000000 0.000000 0.000000 1.000000 0.000000
#> 4 0.2143595 -1.4668197 1.000000 0.0000000 0.000000 1.000000 0.000000 0.000000
#> 5 0.3107692 1.7576174 1.000000 0.0000000 0.000000 0.000000 1.000000 0.000000
#> 6 1.1739663 -0.1933380 3.427756 0.7475398 2.310769 1.000000 0.000000 0.000000
#> 7 0.6187899 -0.8497547 1.000000 0.0000000 0.000000 1.000000 0.000000 0.000000
#> 8 -0.1127343 0.0584655 0.000000 1.0000000 0.000000 1.000000 0.000000 0.000000
#> 9 0.9170283 -0.8176704 0.000000 1.0000000 0.000000 1.980628 1.769035 1.945731
#> 10 -0.2232594 -2.0503078 0.000000 0.0000000 1.000000 0.000000 0.000000 1.000000
x = makeX(dfn, sparse = TRUE)
na.replace(x, m)
#> 10 x 8 sparse Matrix of class "dgCMatrix"
#> X1 X2 X3a X3b X3c X4A X4B X4C
#> 1 -0.3260365 0.5264481 . 1.0000000 . . . 1.000000
#> 2 0.5524619 -0.7948444 . . 1.000000 . 1.000000 .
#> 3 2.2004116 1.4277555 1.000000 . . . 1.000000 .
#> 4 0.2143595 -1.4668197 1.000000 . . 1.000000 . .
#> 5 0.3107692 1.7576174 1.000000 . . . 1.000000 .
#> 6 1.1739663 -0.1933380 3.427756 0.7475398 2.310769 1.000000 . .
#> 7 0.6187899 -0.8497547 1.000000 . . 1.000000 . .
#> 8 -0.1127343 0.0584655 . 1.0000000 . 1.000000 . .
#> 9 0.9170283 -0.8176704 . 1.0000000 . 1.980628 1.769035 1.945731
#> 10 -0.2232594 -2.0503078 . . 1.000000 . . 1.000000