summary.RdIt presents the results from the gmm or gel estimation in the same fashion as summary does for the lm class objects for example. It also compute the tests for overidentifying restrictions.
# S3 method for class 'gmm'
summary(object, ...)
# S3 method for class 'sysGmm'
summary(object, ...)
# S3 method for class 'gel'
summary(object, ...)
# S3 method for class 'ategel'
summary(object, robToMiss = TRUE, ...)
# S3 method for class 'tsls'
summary(object, vcov = NULL, ...)
# S3 method for class 'summary.gmm'
print(x, digits = 5, ...)
# S3 method for class 'summary.sysGmm'
print(x, digits = 5, ...)
# S3 method for class 'summary.gel'
print(x, digits = 5, ...)
# S3 method for class 'summary.tsls'
print(x, digits = 5, ...)An object of class gmm or gel returned by the function gmm or gel
An object of class summary.gmm or summary.gel returned by the function summary.gmm summary.gel
The number of digits to be printed
An alternative covariance matrix computed with
vcov.tsls
If TRUE, it computes the robust to
misspecification covariance matrix
Other arguments when summary is applied to another class object
It returns a list with the parameter estimates and their standard deviations, t-stat and p-values. It also returns the J-test and p-value for the null hypothesis that \(E(g(\theta,X)=0\)
Hansen, L.P. (1982), Large Sample Properties of Generalized Method of Moments Estimators. Econometrica, 50, 1029-1054,
Hansen, L.P. and Heaton, J. and Yaron, A.(1996), Finit-Sample Properties of Some Alternative GMM Estimators. Journal of Business and Economic Statistics, 14 262-280.
Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73, 983-1002.
Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The Annals of Statistics, 25, 2084-2102.
Newey, W.K. and Smith, R.J. (2004), Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators. Econometrica, 72, 219-255.
# GMM #
set.seed(444)
n = 500
phi<-c(.2,.7)
thet <- 0
sd <- .2
x <- matrix(arima.sim(n = n, list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol = 1)
y <- x[7:n]
ym1 <- x[6:(n-1)]
ym2 <- x[5:(n-2)]
ym3 <- x[4:(n-3)]
ym4 <- x[3:(n-4)]
ym5 <- x[2:(n-5)]
ym6 <- x[1:(n-6)]
g <- y ~ ym1 + ym2
x <- ~ym3+ym4+ym5+ym6
res <- gmm(g, x)
#> Error in eval(predvars, data, env): object 'ym3' not found
summary(res)
#> Error: object 'res' not found
# GEL #
t0 <- res$coef
#> Error: object 'res' not found
res <- gel(g, x, t0)
#> Error: object 't0' not found
summary(res)
#> Error: object 'res' not found
# tsls #
res <- tsls(y ~ ym1 + ym2,~ym3+ym4+ym5+ym6)
#> Error in eval(predvars, data, env): object 'ym3' not found
summary(res)
#> Error: object 'res' not found