This function uses car::Anova()
(by default) to calculate global p-values
for model covariates.
Output from tbl_regression
and tbl_uvregression
objects supported.
add_global_p(x, ...)
# S3 method for class 'tbl_regression'
add_global_p(
x,
include = everything(),
keep = FALSE,
anova_fun = global_pvalue_fun,
type = "III",
quiet,
...
)
# S3 method for class 'tbl_uvregression'
add_global_p(
x,
include = everything(),
keep = FALSE,
anova_fun = global_pvalue_fun,
type = "III",
quiet,
...
)
(tbl_regression
, tbl_uvregression
)
Object with class 'tbl_regression'
or 'tbl_uvregression'
Additional arguments to be passed to car::Anova
,
aod::wald.test()
or anova_fun
(if specified)
(tidy-select
)
Variables to calculate global p-value for. Default is everything()
(scalar logical
)
Logical argument indicating whether to also retain the individual
p-values in the table output for each level of the categorical variable.
Default is FALSE
.
(function
)
Function used to calculate global p-values.
Default is generic global_pvalue_fun()
, which wraps car::Anova()
for
most models. The type
argument is passed to this function. See help file for details.
To pass a custom function, it must accept as its first argument is a model.
Note that anything passed in ...
will be passed to this function.
The function must return an object of class 'cards'
(see cardx::ard_car_anova()
as an example),
or a tibble with columns 'term'
and 'p.value'
(e.g. \(x, type, ...) car::Anova(x, type, ...) |> broom::tidy()
).
Type argument passed to anova_fun
. Default is "III"
# Example 1 ----------------------------------
lm(marker ~ age + grade, trial) |>
tbl_regression() |>
add_global_p()
Characteristic
Beta
95% CI1
p-value
1 CI = Confidence Interval
# Example 2 ----------------------------------
trial[c("response", "age", "trt", "grade")] |>
tbl_uvregression(
method = glm,
y = response,
method.args = list(family = binomial),
exponentiate = TRUE
) |>
add_global_p()
Characteristic
N
OR1
95% CI1
p-value
1 OR = Odds Ratio, CI = Confidence Interval