Collection of tidiers that can be utilized in gtsummary. See details below.
tidy_standardize(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)
tidy_bootstrap(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)
tidy_robust(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
vcov = NULL,
vcov_args = NULL,
...,
quiet = FALSE
)
pool_and_tidy_mice(x, pool.args = NULL, ..., quiet = FALSE)
tidy_gam(x, conf.int = FALSE, exponentiate = FALSE, conf.level = 0.95, ...)
tidy_wald_test(x, tidy_fun = NULL, vcov = stats::vcov(x), ...)(model)
Regression model object
(scalar logical)
Logical indicating whether to exponentiate the coefficient estimates.
Default is FALSE.
(scalar real)
Confidence level for confidence interval/credible interval. Defaults to 0.95.
(scalar logical)
Logical indicating whether or not to include a confidence
interval in the output. Default is TRUE.
Arguments passed to method;
pool_and_tidy_mice(): mice::tidy(x, ...)
tidy_standardize(): parameters::standardize_parameters(x, ...)
tidy_bootstrap(): parameters::bootstrap_parameters(x, ...)
tidy_robust(): parameters::model_parameters(x, ...)
tidy_robust(): Arguments passed to parameters::model_parameters().
At least one of these arguments must be specified.
tidy_wald_test(): vcov is the covariance matrix of the model with default stats::vcov().
(named list)
Named list of arguments passed to mice::pool() in
pool_and_tidy_mice(). Default is NULL
(function)
Tidier function for the model. Default is to use broom::tidy().
If an error occurs, the tidying of the model is attempted with
parameters::model_parameters(), if installed.
These tidiers are passed to tbl_regression() and tbl_uvregression() to
obtain modified results.
tidy_standardize() tidier to report standardized coefficients. The
parameters
package includes a wonderful function to estimate standardized coefficients.
The tidier uses the output from parameters::standardize_parameters(), and
merely takes the result and puts it in broom::tidy() format.
tidy_bootstrap() tidier to report bootstrapped coefficients. The
parameters
package includes a wonderful function to estimate bootstrapped coefficients.
The tidier uses the output from parameters::bootstrap_parameters(test = "p"), and
merely takes the result and puts it in broom::tidy() format.
tidy_robust() tidier to report robust standard errors, confidence intervals,
and p-values. The parameters
package includes a wonderful function to calculate robust standard errors, confidence intervals, and p-values
The tidier uses the output from parameters::model_parameters(), and
merely takes the result and puts it in broom::tidy() format. To use this
function with tbl_regression(), pass a function with the arguments for
tidy_robust() populated.
pool_and_tidy_mice() tidier to report models resulting from multiply imputed data
using the mice package. Pass the mice model object before the model results
have been pooled. See example.
tidy_wald_test() tidier to report Wald p-values, wrapping the
aod::wald.test() function.
Use this tidier with add_global_p(anova_fun = tidy_wald_test)
# Example 1 ----------------------------------
mod <- lm(age ~ marker + grade, trial)
tbl_stnd <- tbl_regression(mod, tidy_fun = tidy_standardize)
tbl <- tbl_regression(mod)
tidy_standardize_ex1 <-
tbl_merge(
list(tbl_stnd, tbl),
tab_spanner = c("**Standardized Model**", "**Original Model**")
)
# Example 2 ----------------------------------
# use "posthoc" method for coef calculation
tbl_regression(mod, tidy_fun = \(x, ...) tidy_standardize(x, method = "posthoc", ...))
Characteristic
Beta
95% CI
Abbreviation: CI = Confidence Interval
# Example 3 ----------------------------------
# Multiple Imputation using the mice package
set.seed(1123)
pool_and_tidy_mice_ex3 <-
suppressWarnings(mice::mice(trial, m = 2)) |>
with(lm(age ~ marker + grade)) |>
tbl_regression()
#>
#> iter imp variable
#> 1 1 age
#> Error in chol.default(sym(p$v)): the leading minor of order 2 is not positive