R/community.R
cluster_edge_betweenness.Rd
Community structure detection based on the betweenness of the edges in the network. This method is also known as the Girvan-Newman algorithm.
cluster_edge_betweenness(
graph,
weights = NULL,
directed = TRUE,
edge.betweenness = TRUE,
merges = TRUE,
bridges = TRUE,
modularity = TRUE,
membership = TRUE
)
The graph to analyze.
The weights of the edges. It must be a positive numeric vector,
NULL
or NA
. If it is NULL
and the input graph has a
‘weight’ edge attribute, then that attribute will be used. If
NULL
and no such attribute is present, then the edges will have equal
weights. Set this to NA
if the graph was a ‘weight’ edge
attribute, but you don't want to use it for community detection. Edge weights
are used to calculate weighted edge betweenness. This means that edges are
interpreted as distances, not as connection strengths.
Logical constant, whether to calculate directed edge betweenness for directed graphs. It is ignored for undirected graphs.
Logical constant, whether to return the edge betweenness of the edges at the time of their removal.
Logical constant, whether to return the merge matrix
representing the hierarchical community structure of the network. This
argument is called merges
, even if the community structure algorithm
itself is divisive and not agglomerative: it builds the tree from top to
bottom. There is one line for each merge (i.e. split) in matrix, the first
line is the first merge (last split). The communities are identified by
integer number starting from one. Community ids smaller than or equal to
\(N\), the number of vertices in the graph, belong to singleton
communities, i.e. individual vertices. Before the first merge we have \(N\)
communities numbered from one to \(N\). The first merge, the first line of
the matrix creates community \(N+1\), the second merge creates community
\(N+2\), etc.
Logical constant, whether to return a list the edge removals which actually splitted a component of the graph.
Logical constant, whether to calculate the maximum modularity score, considering all possibly community structures along the edge-betweenness based edge removals.
Logical constant, whether to calculate the membership vector corresponding to the highest possible modularity score.
cluster_edge_betweenness()
returns a
communities()
object, please see the communities()
manual page for details.
The idea behind this method is that the betweenness of the edges connecting two communities is typically high, as many of the shortest paths between vertices in separate communities pass through them. The algorithm successively removes edges with the highest betweenness, recalculating betweenness values after each removal. This way eventually the network splits into two components, then one of these components splits again, and so on, until all edges are removed. The resulting hierarhical partitioning of the vertices can be encoded as a dendrogram.
cluster_edge_betweenness()
returns various information collected
through the run of the algorithm. Specifically, removed.edges
contains
the edge IDs in order of the edges' removal; edge.betweenness
contains
the betweenness of each of these at the time of their removal; and
bridges
contains the IDs of edges whose removal caused a split.
M Newman and M Girvan: Finding and evaluating community structure in networks, Physical Review E 69, 026113 (2004)
edge_betweenness()
for the definition and calculation
of the edge betweenness, cluster_walktrap()
,
cluster_fast_greedy()
,
cluster_leading_eigen()
for other community detection
methods.
See communities()
for extracting the results of the community
detection.
Community detection
as_membership()
,
cluster_fast_greedy()
,
cluster_fluid_communities()
,
cluster_infomap()
,
cluster_label_prop()
,
cluster_leading_eigen()
,
cluster_leiden()
,
cluster_louvain()
,
cluster_optimal()
,
cluster_spinglass()
,
cluster_walktrap()
,
compare()
,
groups()
,
make_clusters()
,
membership()
,
modularity.igraph()
,
plot_dendrogram()
,
split_join_distance()
,
voronoi_cells()
g <- sample_pa(100, m = 2, directed = FALSE)
eb <- cluster_edge_betweenness(g)
g <- make_full_graph(10) %du% make_full_graph(10)
g <- add_edges(g, c(1, 11))
eb <- cluster_edge_betweenness(g)
eb
#> IGRAPH clustering edge betweenness, groups: 2, mod: 0.49
#> + groups:
#> $`1`
#> [1] 1 2 3 4 5 6 7 8 9 10
#>
#> $`2`
#> [1] 11 12 13 14 15 16 17 18 19 20
#>